Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T20:44:56.811Z Has data issue: false hasContentIssue false

Tectonothermal evolution of a major thrust system: the Esla–Valsurbio unit (Cantabrian Zone, NW Spain)

Published online by Cambridge University Press:  24 May 2013

SUSANA GARCÍA-LÓPEZ
Affiliation:
Departamento de Geología, Universidad de Oviedo, c/ Arias de Velasco s/n, 33005 Oviedo, Spain
FERNANDO BASTIDA*
Affiliation:
Departamento de Geología, Universidad de Oviedo, c/ Arias de Velasco s/n, 33005 Oviedo, Spain
JESÚS ALLER
Affiliation:
Departamento de Geología, Universidad de Oviedo, c/ Arias de Velasco s/n, 33005 Oviedo, Spain
JAVIER SANZ-LÓPEZ
Affiliation:
Departamento de Geología, Universidad de Oviedo, c/ Arias de Velasco s/n, 33005 Oviedo, Spain
JOSÉ A. MARÍN
Affiliation:
MINERSA Group, Departamento de Exploración y Geología, c/ Mieres, 24-3°I, 33208 Gijón, Spain
SILVIA BLANCO-FERRERA
Affiliation:
Departamento de Geología, Universidad de Oviedo, c/ Arias de Velasco s/n, 33005 Oviedo, Spain
*
Author for correspondence: [email protected]

Abstract

The tectonothermal evolution of a unit in the foreland fold-and-thrust belt of the Iberian massif is established using the conodont colour alteration index (CAI). The unit consists of two parts with different tectonothermal histories – the Esla nappe region and the Valsurbio region – separated by a synorogenic Carboniferous basin (Guardo–Valderrueda basin). The Esla nappe region evolved in diacaizonal conditions (corresponding to the diagenetic conditions of the pelites) whose palaeotemperatures were controlled by rock burial. Maximum values were reached before the emplacement of the thrust nappes, so tectonic superimposition is not registered by the CAI. Overburial due to the emplacement of the thrust units was prevented by simultaneous intense erosion. The geothermal gradient obtained for burial was c. 35 °C km−1 and the temperature reached by the older Cambrian rocks was c. 210–230 °C. The Valsurbio region was affected by an extensional tectonothermal post-orogenic event that gave rise to metamorphism with ancaizonal or epicaizonal conditions (corresponding to anchizone or epizone of the pelites). The most common maximum palaeotemperatures reached in this event fall within the range 305–415 °C, although higher palaeotemperatures could be reached locally as a consequence of contact metamorphism. This event gave rise to subhorizontal cleavage that cuts the main Variscan folds. Coal rank data indicate an increase in maximum palaeotemperatures eastwards from the Esla nappe region to the Valsurbio region through the Guardo–Valderrueda basin.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aller, J., Alonso, J. L. & Pérez-Estaún, A. 1985. Procedencia de los conglomerados cantabrienses del Grupo Cea (Zona Cantábrica, valles del Esla y Cea). Boletín Geológico y Minero XCVI, 581–91.Google Scholar
Aller, J., Bastida, F., Brime, C. & Pérez-Estaún, A. 1987. Cleavage and its relation with metamorphic grade in the Cantabrian Zone (Hercynian of North-West Spain). Sciences Géologiques Bulletin 40, 255–72.Google Scholar
Aller, J. & Brime, C. 1985. Deformación y metamorfismo en la parte Sur de la Cuenca Carbonífera Central (NO de España). Compte Rendu X Congrès International Stratigraphie et de Géologie du Carbonifère, Madrid 3, 541–8.Google Scholar
Aller, J., Valín, M. L., García-López, S., Brime, C. & Bastida, F. 2005. Very low grade metamorphic episodes in the southern Cantabrian Zone (Iberian Variscan belt, NW Spain). Bulletin de la Société Géologique de France 176, 487–98.CrossRefGoogle Scholar
Alonso, J. L. 1982 a. Las discordancias progresivas de la cobertera carbonífera de Ocejo de la Peña: testigos de la reactivación de un pliegue del basamento por “flexural-slip” (Cordillera Cantábrica). Boletín Geológico y Minero XCIII, 214–25.Google Scholar
Alonso, J. L. 1982 b. Una nueva discordancia pre “Leónica” fosilizando el manto del Esla (Cordillera Cantábrica). Trabajos de Geología 12, 8392.Google Scholar
Alonso, J. L. 1987 a. Estructura y evolución tectónica de la región del manto del Esla. Inst. Fray Bernardino de Sahagún, León, Spain; 276 pp.Google Scholar
Alonso, J. L. 1987 b. Sequences of thrusts and displacement transfer in the superposed duplexes of the Esla Nappe Region (Cantabrian Zone, NW Spain). Journal of Structural Geology 9, 969–83.CrossRefGoogle Scholar
Alonso, J. L., Pulgar, J. A., García-Ramos, J. C. & Barba, P. 1996. Tertiary basins end Alpine tectonics in the Cantabrian Mountains (NO Spain). In Tertiary basins of Spain: the stratigraphic record of crustal kinematics (eds Friend, P. J. and Dabrio, C. J.) pp. 214–27, Cambridge: Cambridge University Press.Google Scholar
Alpern, B. & Lemos de Sousa, M. J. 2002. Documented international enquiry on solid sedimentary fossil fuels; coal: definitions, classifications, reserves-resources, and energy potential. International Journal of Coal Geology 50, 341.Google Scholar
Arboleya, M. L. 1981. La estructura del Manto del Esla. Boletín del Instituto Geológico y Minero de España XCII, 1940.Google Scholar
Bastida, F., Blanco-Ferrera, S., García-López, S., Sanz-López, J. & Valín, M. L. 2004. Transition from diagenesis to metamorphism in a calcareous tectonic unit of the Iberian Variscan belt (Central massif of the Picos de Europa, NW Spain). Geological Magazine 141, 617–28.Google Scholar
Bastida, F., Brime, C., García-López, S. & Sarmiento, G. N. 1999. Tectono-thermal evolution in a region with thin skinned tectonics: the western nappes in the Cantabrian Zone (Variscan belt of NW Spain). International Journal of Earth Sciences 88, 3848.CrossRefGoogle Scholar
Bastida, F., Marcos, A., Arboleya, M. L. & Méndez, I. 1976. La unidad de Peña Corada y su relación con el manto del Esla (Zona Cantábrica, NW de España). Breviora Geologica Asturica XX, 4955.Google Scholar
Blanco-Ferrera, S., Sanz-López, J., García-López, S., Bastida, F. & Valín, M. L. 2011. Conodont alteration and tectonothermal evolution of a diagenetic unit in the Iberian Variscan belt (Ponga-Cuera unit, NW Spain). Geological Magazine 148, 3549.Google Scholar
Brime, C. 1981. Postdepositional transformation of clays in Palaeozoic rocks of northwest Spain. Clay Mineralogy 16, 421–4.Google Scholar
Brime, C. 1985. A diagenesis to metamorphism transition in the Hercynian of NW Spain. Mineralogical Magazine 49, 481–4.Google Scholar
Brime, C., García-López, S., Bastida, F., Valín, M. L., Sanz-López, J. & Aller, J. 2001. Transition from diagenesis to metamorphism near the front of the Variscan regional metamorphism (Cantabrian Zone, Northwestern Spain). Journal of Geology 109, 363–79.Google Scholar
Brime, C. & Pérez-Estaún, A. 1980. La transición diagénesis-metamorfismo en la región de Cabo Peñas. Cadernos do Laboratorio Xeolóxico de Laxe 1, 8597.Google Scholar
Brime, C. & Valín, M. L. 2006. Asociaciones con cloritoide en rocas de bajo grado metamórfico de la unidad del Pisuerga Carrión (Zona Cantábrica, NO de España). Macla 6, 105–8.Google Scholar
Brouwer, A. 1964. Deux facies dans le Dévonien des montagnes cantabriques méridionales. Breviora Geologica Asturica VIII, 310.Google Scholar
Colmenero, J. R. & Prado, J. G. 1993. Coal basins in the Cantabrian Mountains, Northwestern Spain. International Journal of Coal Geology 23, 215–29.CrossRefGoogle Scholar
Colmenero, J. R., Suárez-Ruiz, I., Fernández-Suárez, J., Barba, P. & Llorens, T. 2008. Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. International Journal of Coal Geology 76, 187204.Google Scholar
Corretgé, L. G. & Suárez, O. 1990. Igneous rocks. In Pre-Mesozoic Geology of Iberia: Part II, Cantabrian and Palentian Zones (eds Dallmeyer, R. D. & Martínez García, E.) pp. 72–9, Berlin: Springer-Verlag.Google Scholar
de Sitter, L. U. 1959. The Río Esla nappe in the zone de León of the Asturian Cantabric Mountain Chain. Notas y Comunicaciones del Instituto Geológico y Minero de España 56, 324.Google Scholar
de Sitter, L. U. 1962. The structure of the southern slope of the Cantabrian Mountains. Explanation of a geological map with sections (scale 1:100,000). Leidse Geologische Mededelingen 26, 255–74.Google Scholar
Epstein, A. G., Epstein, J. B. & Harris, L. D. 1977. Conodont color alteration: an index to organic metamorphism. US Geological Survey, Professional Paper 995, 127.Google Scholar
Gallastegui, G., Heredia, N., Rodríguez-Fernández, L. R. & Cuesta, A., 1990. El “stock” de Peña Prieta en el contexto del magmatismo de la Unidad del Pisuerga-Carrión (Zona Cantábrica, N de España). Cadernos do Laboratorio Xeolóxico de Laxe 15, 203–15.Google Scholar
García-López, S., Bastida, F., Aller, J. & Sanz-López, J. 2001. Geothermal paleogradients and metamorphic zonation from the conodont colour alteration index (CAI). Terra Nova 13, 7983.Google Scholar
García-López, S., Bastida, F., Brime, C., Aller, J., Valín, M. L., Sanz-López, J., Méndez, C. A. & Menéndez-Álvarez, J. R. 1999. Los episodios metamórficos de la Zona Cantábrica y su contexto estructural. Trabajos de Geología de la Universidad de Oviedo 21, 177–87.Google Scholar
García-López, S., Blanco-Ferrera, S. & Sanz-López, J. 2006. Aplicación de los conodontos al conocimiento de la evolución tectonotérmica de las zonas externas de los orógenos. Revista Española de Micropaleontología 38, 289–98.Google Scholar
García-López, S., Brime, C., Bastida, F. & Sarmiento, G.N. 1997. Simultaneous use of thermal indicators to analyse the transition from diagenesis to metamorphism: an example from the Variscan Belt of northwest Spain. Geological Magazine 134, 323–34.CrossRefGoogle Scholar
García-López, S., Brime, C., Valín, M. L., Sanz-López, J., Bastida, F., Aller, J. & Blanco-Ferrera, S. 2007. Tectonothermal evolution of a foreland fold and thrust belt: the Cantabrian Zone (Iberian Variscan belt, NW Spain). Terra Nova 19, 469–75.Google Scholar
Gutiérrez-Alonso, G. & Nieto, F. 1996. White-mica ‘crystallinity’, finite strain and cleavage development across a large Variscan structure, NW Spain. Journal of the Geological Society 153, 287–99.CrossRefGoogle Scholar
Helsen, S. 1997. The influence of host-rock composition on the colour alteration of Namurian conodonts from Belgium. Geologie in Mijnbouw 75, 373–8.Google Scholar
Julivert, M. 1971. Décollements tectonics in the Hercynian Cordillera of NW Spain. Americam Journal of Sciences 270, 129.Google Scholar
Keller, M. & Krumm, S. 1993. Variscan versus Caledonian and Precambrian metamorphic events in the Cantabrian Mountains, Northern Spain. Zeitschrift der Deutsche Geologische Gesellschaft 144, 88103.Google Scholar
Königshof, P. 1991. Conodont colour alteration adjacent to a granitic intrusion, Harz Mountains. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1991–2, 8490.Google Scholar
Koopmans, B. N. 1962. The sedimentary and structural history of the Valsurvio dome. Leidse Geologische Mededelingen 26, 377445.Google Scholar
Koopmans, B. N. 1964. Refolding in the thrust fault zone of San Martín de los Herreros (Prov. Palencia, Spain). Breviora Geologica Asturica VIII, 1126.Google Scholar
Kovács, S. & Árkai, P. 1987. Conodont alteration metamorphosed limestones from northern Hungary, and its relationship to carbonate texture, illite crystallinity and vitrinite reflectance. In Conodonts: Investigative Techniques and Applications (ed. Austin, R.L.), pp. 209–29, Chichester: British Micropalaeontological Society Series, Ellis Horwood.Google Scholar
Llorens, T., Suárez-Ruiz, I. y Colmenero, J.R. 2006. Petrografía de los carbones cantabrienses (Carbonífero sup.) del Grupo Cea de la Cuenca Guardo-Valderrueda (León-Palencia). Geogaceta, 40, 279–82.Google Scholar
Loeschke, J. 1982. Late Hercynian igneous rocks of the south eastern Cantabrian Mountains (NW Spain). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 162, 260–71.Google Scholar
Marín, J. A., Pulgar, J. A. & Alonso, J. L. 1995. La deformación alpina en el domo de Valsurvio (Zona Cantábrica, NO de España. Revista de la Sociedad Geológica de España 8, 111–6.Google Scholar
Marín, J. A., Villa, E., García-López, S. & Menéndez, J. R. 1996. Estratigrafía y metamorfismo del Carbonífero de la zona de San Martín-Ventanilla (norte de Palencia, Cordillera Cantábrica). Revista de la Sociedad Geológica de España 9, 241–51.Google Scholar
Merriman, R.J. & Frey, M. 1999. Patterns of very low-grade metamorphism in pelitic rocks. In Low-Grade Metamorphism (eds Frey, M. & Robinson, D.) pp. 61107, Bristol: Blackwell.Google Scholar
Merriman, R. J. & Kemp, S. J. 1997. Correlation clay mineral reaction progress with organic maturity indicators. In Clay Mineral Evolution, Basin Maturity and Mudrock Properties (ed. Merriman, R.J.) pp 41–3, Nottingham: British Geological Survey.Google Scholar
Patrick, B. E., Evans, B. W., Dumoulin, J. A. & Harris, A. G. 1985. A comparison of carbonate mineral and conodont color alteration index thermometry, Seward Peninsula, Alaska. Geological Society of America, Abstracts with programs 17, 399.Google Scholar
Pérez-Estaún, A. 1978. Estratigrafía y estructura de la rama Sur de la Zona Asturoccidental-leonesa. Memorias del Instituto Geológico y Minero de España 92, 1144.Google Scholar
Pérez-Estaún, A., Bastida, F., Alonso, J. L., Marquinez, J., Aller, J., Álvarez-Marrón, J., Marcos, A. & Pulgar, J. A. 1988. A thin-skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero-Armorican Arc). Tectonics 7, 517–37.Google Scholar
Pulgar, J. A. 1973. La zona de escamas de San Martín-Ventanilla y su posible relación con el Domo de Valsurvio. Breviora Geologica Asturica, 17, 5563.Google Scholar
Raven, J. G. M. & van der Pluijm, B. A. 1986. Metamorphic fluids and transtension in the Cantabrian Mountains of northern Spain: an application of the conodont colour alteration index. Geological Magazine 123, 673–81.Google Scholar
Rejebian, V. A., Harris, A. G. & Huebner, J. S. 1987. Conodont colour and textural alteration: an index to regional metamorphism and hydrothermal alteration. Geological Society of America Bulletin 99, 471–9.Google Scholar
Rodríguez-Fernández, L. R. 1994. La estratigrafía del Paleozoico y la estructura de la región de Fuentes Carrionas y áreas adyacentes (Cordillera herciniana, NO de España), 240 pp. A Coruña: Laboratorio Xeolóxico de Laxe, Serie Nova Terra.Google Scholar
Rodríguez-Fernández, L. R., Heredia, N., Lobato, L. & Velando, F. 1985. Memoria del Mapa Geológico de España E. 1:50.000 n° 106 (Camporredondo de Alba), 98 pp. Madrid: Segunda serie Magna, IGME.Google Scholar
Rupke, J., 1965. The Esla nappe, Cantabrian Mountains (Spain). Leidse Geologische Mededelingen 32, 174.Google Scholar
Sarmiento, G. N. & García-López, S. 1996. El método del Índice de Alteración del Color (CAl) de los conodontos: limitaciones y posibilidades. Ejemplos de su aplicación en el Hercínico ibérico. Revista de la Sociedad Geológica de España 9, 112–23.Google Scholar
Valverde-Vaquero, P., Cuesta, A., Gallastegui, G., Suárez, O., Corretgé, L. G. & Dunning, G. R. 1999. U-Pb dating of Late Variscan magmatism in the Cantabrian Zone (Northern Spain). EUGX, abstract. Strasbourg, France.Google Scholar
Voldman, G. G., Bustos-Marún, R. A. & Albanesi, G. L. 2010. Calculation of the conodont Color Alteration Index (CAI) for complex thermal histories. International Journal of Coal Geology 82, 4550.Google Scholar