Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:42:34.410Z Has data issue: false hasContentIssue false

Stratigraphic evolution and source rock potential of a Lower Oligocene to Lower–Middle Miocene continental slope system, Hellenic Fold and Thrust Belt, Ionian Sea, northwest Greece

Published online by Cambridge University Press:  09 July 2013

A. MARAVELIS*
Affiliation:
School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308 NSW, Australia
G. MAKRODIMITRAS
Affiliation:
Laboratory of Sedimentology, Department of Geology, University of Patras, Greece
N. PASADAKIS
Affiliation:
PVT and Core Analysis Laboratory, Department of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
A. ZELILIDIS
Affiliation:
Laboratory of Sedimentology, Department of Geology, University of Patras, Greece
*
Author for correspondence: [email protected]

Abstract

The Western flanks of the Hellenic Fold and Thrust Belt are similar to the nearby prolific Albanian oil and gas provinces, where commercial volumes of oil have been produced. The Lower Oligocene to Lower–Middle Miocene slope series at this part of the Hellenic Fold and Thrust Belt provides a unique opportunity to evaluate the anatomy and source rock potential of such a system from an outcrop perspective. Slope progradation is manifested as a vertical pattern exhibiting an increasing amount of sediment bypass upwards, which is interpreted as reflecting increasing gradient conditions. The palaeoflow trend exhibits a western direction during the Late Oligocene but since the Early Miocene has shifted to the East. The occurrence of reliable index species allowed us to recognize several nannoplankton biozones (NP23 to NN5). Organic geochemical data indicate that the containing organic matter is present in sufficient abundance and with good enough quality to be regarded as potential source rocks. The present Rock-Eval II pyrolytic yields and calculated values of hydrogen and oxygen indexes imply that the recent organic matter type is of type III kerogen. A terrestrial origin is suggested and is attributed to short transportation distance and accumulation at rather low water depth. The succession is immature with respect to oil generation and has not experienced high temperature during burial. However, its eastern down-slope equivalent deep-sea mudstone facies should be considered as good gas-prone source rocks onshore since they may have experienced higher thermal evolution. In addition, they may have improved organic geochemical parameters because there is no oxidization of the organic matter.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armentrout, J. M., Kanschat, K. A., Meisling, K. E., Tsakma, J. J., Antrim, L. & McConnell, D. R. 2000. Neogene turbidite systems of the Gulf of Guinea continental margin slope, offshore Nigeria. In Fine-Grained Turbidite Systems (eds Bouma, A. H. & Stone, C. G.), pp. 93108. Memoir Special Publication. Tulsa, OK: American Association of Petroleum Geologists.Google Scholar
Behar, F., Beaumont, V., De, B. & Penteado, H. L. 2001. Rock-Eval 6 technology: performances and developments. Oil & Gas Science and Technology 56, 111–34.Google Scholar
Bernoulli, D. & Renz, O. 1970. Jurassic Carbonate Facies and New Ammonite Faunas from Western Greece. Eclogae Geologicae Helvetiae 63 (2), 573607.Google Scholar
Bertello, F., Fantoni, R. & Franciosi, R. 2008. Exploration Country Focus: Italy. American Association of Petroleum Geologist European Region Conference Newsletter 3, 59.Google Scholar
Bordenave, M. L. 1993. The Sedimentation of Organic Matter. In Applied Petroleum Geochemistry (ed Bordenave, M. L.), pp. 1576. Paris: Éditions Technip.Google Scholar
Bordenave, M. L. & Huc, A. Y. 1995. The Cretaceous source rocks in the Zagros Foothills of Iran: an example of a large size intracratonic basin. Revue de L'institut Français du Petrole 50, 727–53.CrossRefGoogle Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: a Graphic Approach to Facies Interpretation. Amsterdam: Elsevier, 168 pp.Google Scholar
Bown, P. R., Lees, J. A. & Young, J. R. 2004. Calcareous nannoplankton evolution and diversity through time. In Coccolithophores – From molecular processes to global impact (eds Thierstein, H. R. & Young, J. R.), pp. 481508. Berlin: Springer-Verlag.Google Scholar
Burwood, R., De Witte, S. M., Mycke, B. & Paulet, J. 1995. Petroleum geochemical characterization of the lower Congo Coastal Basin Bucomazi formation. In Petroleum Source Rocks (ed Katz, B. J.), pp. 235–63. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Catuneanu, O., Willis, A. J. & Miall, A. D. 1998. Temporal significance of sequence boundaries. Sedimentary Geology 121, 157–78.CrossRefGoogle Scholar
Clement, C., Hird, A., Charvis, P., Sachpazi, M. & Marnelis, F. 2000. Seismic structure and the active Hellenic subduction in the Ionian Islands. Tectonophysics 329, 141–56.Google Scholar
Dymann, T. S., Palacos, J. G., Tysdal, R. G., Perry, W. J. & Pawlewicz, M. J. 1996. Source rock potential of middle cretaceous rocks in southwestern Montana. American Association of Petroleum Geologists Bulletin 80, 1177–84.Google Scholar
Espitalie, J., Deroo, G. & Marquis, F. 1985 a. La pyrolyse Rock-Eval et ses applications. Partie 1. Revue de l'Institut Francais du Petrole 40, 563–79.Google Scholar
Espitalie, J., Deroo, G. & Marquis, F. 1985 b. La pyrolyse Rock-Eval et ses applications. Partie 2. Revue de l'Institut Francais du Petrole 40, 755–84.CrossRefGoogle Scholar
Espitalie, J., Deroo, G. & Marquis, F. 1986. La pyrolyse Rock-Eval et ses applications. Partie 3. Revue de l'Institut Francais du Petrole 41, 7389.Google Scholar
Espitalie, J., Laporte, J. L., Madec, M., Marquis, F., Leplat, P. & Paulet, J. 1977. Méthode rapide de caractérisation des roches mères, de leur potentiel pétrolier et de leur degré d'évolution. Revue de l'Institut Francais du Petrole 32, 2345.CrossRefGoogle Scholar
Espitalie, J., Marquis, F. & Barsony, I. 1984. Geochemical logging. In Analytical Pyrolysis-Techniques and Applications (ed Voorhees, K. J.), pp. 276304. Boston: Butterworth.Google Scholar
Flint, S. S. & Hodgson, D. M. 2005. Submarine slope systems: Processes and products. In Submarine Slope Systems: Processes and products (eds Hodgson, D. M. & Flirt, S. S.), pp. 2750. Geological Society of London Special Publication no. 244.Google Scholar
Fox, J. E. & Ahlbrandt, T. S. 2002. Petroleum geology and total petroleum systems of the Widyan Basin and interior platform of Saudi Arabia and Iraq. US Geological Survey Bulletin 1, 126.Google Scholar
Galloway, W. E. 1998. Siliciclastic slope and base-of-slope depositional systems: component facies, stratigraphic architecture, and classification. American Association of Petroleum Geologists Bulletin 82, 569–95.Google Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235, 1156–67.Google Scholar
Hedberg, H. D. 1970. Continental margins from viewpoint of the petroleum geologist. American Association of Petroleum Geologists Bulletin 54, 343.Google Scholar
Hickson, T. A. & Lowe, D. R. 2002. Facies architecture of a submarine fan-channel-levee complex: the Juniper ridge conglomerate, Coalinga, California. Sedimentology 48, 335–62.Google Scholar
Hunt, J. M. 1995. Petroleum Geochemistry and Geology. New York: W. H. Freeman and Company, 743 pp.Google Scholar
Igrs-Ifp 1996. Etude geologique de l'Epire Grece nord-occidentale. Paris: Éditions Technip, 306 pp.Google Scholar
Jackson, K. S., Hawkins, P. J. & Bennett, A. J. R. 1985. Regional facies and geochemical evaluation of southern Denison Trough. Australian Petroleum Production and Exploration Journal 20, 143–58.Google Scholar
Jones, R. W. 1984. Comparison of carbonate and shale source rocks. In Petroleum Geochemistry and Source Potential of Carbonate Rocks (ed Palacas, J.), pp. 163–80. Tulsa, OK: American Association of Petroleum Geologists Studies in Geology.Google Scholar
Karakitsios, V. 1992. Ouverture et inversion tectonique du basin ionien (Epire, Grece). Annales Géologiques des Pays Hélléniques 35, 85318.Google Scholar
Karakitsios, V. 1995. The influence of preexisting structure and halokinesis on organic matter preservation and thrust system evolution in the Ionian basin, Northwestern Greece. American Association of Petroleum Geologists Bulletin 79, 960–80.Google Scholar
Karakitsios, V. & Rigakis, N. 2007. Evolution and petroleum potential of Western Greece. Journal of Petroleum Geology 30 (3), 197218.CrossRefGoogle Scholar
Konstantopoulos, P. A. & Zelilidis, A. 2012. Sedimentation of submarine fan deposits in the Pindos foreland basin, from late Eocene to early Oligocene, west Peloponnesus peninsula, SW Greece. Geological Journal. Published online 2 Aug 2012. doi: 10.1002/gj.2450.Google Scholar
Lafargue, E., Marquis, F. & Pillot, D. 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil & Gas Science and Technology 53, 421–37.Google Scholar
Lowe, D. R. 1982. Sediment gravity flows II: Depositional models with special reference to the deposits of high density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Maravelis, A., Konstantopoulos, P., Pantopoulos, G. & Zelilidis, A. 2007. North Aegean sedimentary basin evolution during the Late Eocene to Early Oligocene based on sedimentological studies on Lemnos Island (NE Greece). Geologica Carpathica 58, 455–64.Google Scholar
Maravelis, A., Makrodimitras, G. & Zelilidis, A. 2012. Hydrocarbon prospectivity in Western Greece. Oil and Gas European Journal 38 (2), 84–9.Google Scholar
Maravelis, A. & Zelilidis, A. 2010. Organic geochemical characteristics of the late Eocene–early Oligocene submarine fans and shelf deposits on Lemnos Island, NE Greece. Journal of Petroleum Science and Engineering 71 (3–4), 160–8.Google Scholar
Maravelis, A. & Zelilidis, A. 2012. Paleoclimatology and Paleoecology across the Eocene/Oligocene boundary, Thrace Basin, Northeast Aegean Sea, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 365–366, 8198.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. Proceedings of the Second Planktonic Conference-Roma 2, 739–85.Google Scholar
McCaffrey, W. D., Gupta, S. & Btunt, R. 2002. Repeated cycles of submarine channel incision, infill and transition to sheet sandstone development in the Alpine Foreland Basin, SE France. Sedimentology 49, 623–35.Google Scholar
McIver, R. D. 1975. Hydrocarbon occurrences from JOIDES Deep Sea Drilling Project cores. Proceedings Ninth World Petroleum Congress, 2, 269–80.Google Scholar
Monechi, S. & Thierstein, H. R. 1985. Late Cretaceous-Eocene nannofossil and magnetostratigraphic correlations near Gubbio, Italy. Marine Micropaleontology 9, 419–40.Google Scholar
Moore, G. T. & Fullman, T. J. 1975. Submarine channel systems and their potential for petroleum localization. In Deltas, Models for Exploration (ed Broussard, M. L.), pp. 165–89. Houston: Houston Geological Society.Google Scholar
Moscardelli, L., Wood, L. & Mann, P. 2006. Mass-transport complexes and associated processes in the offshore area of Trinidad and Venezuela. American Association of Petroleum Geologists Bulletin 90, 1059–88.CrossRefGoogle Scholar
Mutti, E. & Normark, W. R. 1987. Comparing examples of modern and ancient turbidite systems: problems and concepts. In Marine Clastic Sedimentology: Concepts and Case Studies (eds Legett, J. K. & Zuffa, G.), pp. 138. London: Graham and Trotman.Google Scholar
Mutti, E. & Normark, W. R. 1991. An integrated approach to the study of turbidite systems. In Seismic Facies and Sedimentary Processes of Submarine Fans and Turbidite Systems (eds Weimer, P. & Link, M. H.), pp. 75106. New York: Springer Verlag.Google Scholar
Mutti, E. & Ricci-Lucchi, F. 1975. Turbidite facies and facies associations, LA.S fieldtrip guidebook A-11. International Sedimentologic Congress IX, 21–6.Google Scholar
Mutti, E., Tinterri, R., Benevelli, G., Di Biase, D. & Cavanna, G. 2003. Deltaic, mixed and turbidite sedimentation of ancient foreland basins. Marine and Petroleum Geology 20, 733–55.CrossRefGoogle Scholar
Perch-Nielsen, K. 1985. Cenozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 427–54. Cambridge: Cambridge University Press.Google Scholar
Peters, K. E. 1986. Guidelines for evaluating petroleum source rocks using programmed pyrolysis. American Association of Petroleum Geologists Bulletin 70 (3), 319–29.Google Scholar
Peters, K. E. & Cassa, M. R. 1994. Applied source rock geochemistry. In The Petroleum System-from Source to Trap (eds Magoon, L. B. & Dow, W. G.), pp. 93120. American Association of Petroleum Geologists Memoir no. 60.Google Scholar
Peters, K. E. & Simoneit, B. R. T. 1982. Rock-Eval pyrolysis of quaternary sediments from Leg 64, sites 479 and 480, Gulf of California. Initial Report of the Deep Sea Drilling Project 64, 2593.Google Scholar
Pickering, K. T., Clark, J. D., Ricci Lucchi, F., Smith, R. D. A., Hiscott, R. N. & Kenyon, N. H. 1995. Architectural element analysis of turbidite systems, and selected topical problems for sand-prone deep-water systems. In Atlas of Deep-Water Environments: Architectural Style in Turbidite Systems (eds Pickering, K. T., Hiscott, R. N., Kenyon, N. H., Ricci Lucchi, F. & Smith, R. D. A.), pp. 110. London: Chapman and Hall.Google Scholar
Piper, D. J. W. & Normark, W. R. 2001. Sandy fans; from Amazon to Hueneme and beyond: American Association of Petroleum Geologists Bulletin 85, 1407–38.Google Scholar
Pirmez, C. & Flood, R. D. 1995. Morphology and structure of Amazon Channel. In Initial Reports of the Ocean Drilling Program (eds Flood, R. D., Piper, D. J. W. & Klaus, A.), Ocean Drilling Program no. 155, pp. 2345. College Station, TX: Ocean Drilling Program.Google Scholar
Posamentier, H. W., Jervey, M. T. & Vial, P. R. 1988. Eustatic controls on clastic deposition I, conceptual framework. In Sea-Level Changes: An Intergraded Approach (eds Wilgus, C. K., Hastings, B. S., Kendal, C. G. St. C. H. W., Posamentier, H. W., Ross, C. A. & Van Wagoner, J. C.), pp. 109124. Society for Sedimentary Geology, Special Publication no. 42.CrossRefGoogle Scholar
Rigakis, N. & Karakitsios, V. 1998. The source rock horizons of the Ionian Basin (NW Greece). Marine and Petroleum Geology 15, 593617.CrossRefGoogle Scholar
Romans, B. W., Hubbard, S. M. & Graham, S. A. 2009. Stratigraphic evolution of an outcropping continental slope system, Tres Pasos Formation at Cerro Divisadero, Chile. Sedimentology 56, 737–64.Google Scholar
Ross, W. C., Hallwell, B. A., May, J. A., Watts, D. E. & Syvitski, J. P. M. 1994. Slope readjustment: a new model for the development of submarine fans and aprons. Geology 22, 511–14.2.3.CO;2>CrossRefGoogle Scholar
Schmitz, U., Dobrova, H. & Zelilidis, A. 2005. The Hydrocarbon Potential of Western Greece – Past E& P Results and Future Possibilities. American Association of Petroleum Geologist International Conference, Paris, France Search and Discovery Article #90046. Tulsa, OK: American Association of Petroleum Geologists.Google Scholar
Steel, R. J., Crabaugh, J., Schellpeper, M., Mellere, D., Plink-Bjorklund, P., Deibert, J. & Loeseth, T. J. 2000. Deltas vs. rivers at the shelf edge: their relative contributions to the growth of shelf margins and basin floor fans (Barremian and Eocene, Spitsbergen). In Deepwater Reservoirs of the World (ed Weimer, P.), pp. 9811009. Gulf Coast Section Society for Sedimentary Geology, Proceedings of the 20th Annual Research Conference, Special Publication – Houston no. 28.Google Scholar
Tissot, B. P. & Welte, D. H. 1984. Petroleum Formation and Occurrence. Second revised and enlarged edition. 699 pp. Berlin: Springer-Verlag.Google Scholar
Velaj, T., Davison, I., Serjani, A. & Alsop, I. 1999. Thrust tectonics and the role of evaporites in the Ionian zone of the Albanides. American Association of Petroleum Geologists Bulletin 83, 1408–25.Google Scholar
Vial, P. R., Hardenbol, J. & Todd, R. G. 1984. Jurassic unconformities, chronostratigraphy, and sea level-changes from seismic stratigraphy and biostratigraphy. American Association of Petroleum Geologists Memoir 36, 129–44.Google Scholar
Villa, G., Fioroni, C., Pea, L., Bohaty, S. & Persico, D. 2008. Middle Eocene–late Oligocene climate variability: calcareous nannofossil response at Kerguelen Plateau, Site 748. Marine Micropaleontology 69, 173–92.CrossRefGoogle Scholar
Wade, B. S. & Bown, P. R. 2006. Calcareous nannofossils in extreme environments: the Messinian Salinity Crisis, Polemi Basin, Cyprus. Palaeogeography, Palaeoclimatology Palaeoecology 233, 271–86.Google Scholar
Winter, A. & Siesser, W. G. 1994. Coccolithophores. 242 pp. Cambridge: Cambridge University Press.Google Scholar
Young, J. R. 1998. Neogene. In Calcareous Nannofossil Biostratigraphy (ed Bown, P. R.), pp. 225–65. Dordrecht: Kluwer Academic Publishers.Google Scholar
Zelilidis, A., Piper, D. J. W., Vakalas, I., Avramidis, P. & Getsos, K. 2003. Oil and gas plays in Albania: do equivalent plays exist in Greece? Journal of Petroleum Geology 26 (1), 2948.Google Scholar