Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-12-01T08:59:04.943Z Has data issue: false hasContentIssue false

The status of the Makrotantalon Unit (Andros, Greece) within the structural framework of the Attic-Cycladic Crystalline Belt

Published online by Cambridge University Press:  19 July 2013

MAGDALENA H. HUYSKENS*
Affiliation:
Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany
MICHAEL BRÖCKER
Affiliation:
Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstr. 24, 48149 Münster, Germany
*
Author for correspondence: [email protected]

Abstract

This study focuses on the status of the Makrotantalon Unit (Andros, Greece) within the framework of the Cycladic nappe stack. We document unambiguous evidence that this unit has experienced blueschist-facies metamorphism and identify previously unknown lawsonite ± pumpellyite assemblages in glaucophane-free metasediments. The position of the presumed tectonic contact at the base of this unit is vague, but roughly outlined by serpentinites. Only a single outcrop displays a weak angular unconformity with cohesive cataclasites in the footwall. Rb–Sr geochronology was carried out on 11 samples representing various rock types collected within or close to inferred or visible fault zones. Owing to a lack of initial isotopic equilibration and/or subsequent disturbance of the Rb–Sr isotope systematics, isochron relationships are poorly developed or non-existing. In NW Andros, direct dating of distinct displacement events has not been possible, but a lower age limit of ~ 40 Ma for final thrusting is constrained by the new data. Sporadically preserved Cretaceous ages either indicate regional differences in the P–T–d history or a different duration of metamorphic overprinting, which failed to completely eliminate inherited ages. The detachment on the NE coast records a later stage of the structural evolution and accommodates extension-related deformation. Apparent ages of ~ 29–25 Ma for samples from this location are interpreted to constrain the time of a significant deformation increment. On a regional scale, the Makrotantalon Unit can be correlated with the South Evia Blueschist Belt, but assignment to a specific subunit is as yet unconfirmed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Research School of Earth Sciences, The Australian National University, Bldg 142 Mills Road, 0200 Canberra, ACT, Australia

References

Altherr, R., Kreuzer, H., Wendt, I., Lenz, H., Wagner, G. A., Keller, J., Harre, W. & Höhndorf, A. 1982. A Late Oligocene/Early Miocene high temperature belt in the Attic-Cycladic Crystalline Complex (SE Pelagonian, Greece). Geologisches Jahrbuch E 23, 97164.Google Scholar
Altherr, R., Schliestedt, M., Okrusch, M., Seidel, E., Kreuzer, H., Harre, W., Lenz, H., Wendt, I. & Wagner, G. A. 1979. Geochronology of high-pressure rocks on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology 70, 245–55.Google Scholar
Avigad, D. & Garfunkel, Z. 1989. Low angle shear zones underneath and above a blueschist belt – Tinos Island, Cyclades, Greece. Terra Nova 1, 182–7.CrossRefGoogle Scholar
Avigad, D. & Garfunkel, Z. 1991. Uplift and exhumation of high-pressure metamorphic terrains; the example of the Cycladic blueschist belt (Aegean Sea). Tectonophysics 188, 357–72.CrossRefGoogle Scholar
Avigad, D., Garfunkel, Z., Jolivet, L. & Azanon, J. M. 1997. Back arc extension and denudation of Mediterranean eclogites. Tectonics 16, 924–41.Google Scholar
Bonneau, M. & Kienast, J. R. 1982. Subduction, collision et schistes bleus (Grece). Bulletin de la Société geologique de France 24, 781–91.Google Scholar
Bröcker, M. 1990. Blueschist-to-greenschist transition in metabasites from Tinos Island (Cyclades, Greece): compositional control or fluid infiltration. Lithos 25, 2539.Google Scholar
Bröcker, M., Bieling, D., Hacker, B. & Gans, P. 2004. High-Si phengite records the time of greenschist-facies overprinting: implications for models suggesting mega-detachments in the Aegean Sea. Journal of Metamorphic Geology 22, 427–42.Google Scholar
Bröcker, M. & Enders, M. 1999. U–Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geological Magazine 136, 111–18.CrossRefGoogle Scholar
Bröcker, M. & Franz, L. 1998. Rb–Sr isotope studies on Tinos Island (Cyclades, Greece): additional time constraints for metamorphism, extent of infiltration-controlled overprinting and deformational activity. Geological Magazine 135, 369–82.Google Scholar
Bröcker, M. & Franz, L. 2005. The base of the Cycladic blueschist unit on Tinos Island (Greece) re-visited: field relationships, phengite chemistry and Rb–Sr geochronology. Neues Jahrbuch für Mineralogie Abhandlungen 181/1, 8193.Google Scholar
Bröcker, M. & Franz, L. 2006. Dating metamorphism and tectonic juxtaposition on Andros Island (Cyclades, Greece): results of a Rb–Sr study. Geological Magazine 143, 609–20.CrossRefGoogle Scholar
Bröcker, M. & Keasling, A. 2006. Ionprobe U–Pb zircon ages from the high-pressure/low-temperature mélange of Syros, Greece: age diversity and the importance of pre-Eocene subduction. Journal of Metamorphic Geology 24, 615–31.Google Scholar
Bröcker, M., Kreuzer, H., Matthews, A. & Okrusch, M. 1993. 40Ar/39Ar and oxygen isotope studies of polymetamorphism from Tinos Island, Cycladic blueschist belt. Journal of Metamorphic Geology 11, 223–40.CrossRefGoogle Scholar
Bröcker, M. & Pidgeon, R. T. 2007. Protolith ages of meta-igneous and meta-tuffaceous rocks from the Cycladic blueschist unit, Greece: results of a reconnaissance U–Pb zircon study. Journal of Geology 115, 8398.Google Scholar
Buick, I. S. & Holland, T. J. B. 1989. The P–T– t path associated with crustal extension, Naxos, Cyclades, Greece. In Evolution of Metamorphic Belts (eds Daly, J. S., Cliff, R. A. & Yardley, B. W. D.), pp. 365–9. Geological Society of London, Special Publication no. 43.Google Scholar
Bulle, F., Bröcker, M., Gärtner, C. & Keasling, A. 2010. Geochemistry and geochronology of HP mélanges from Tinos and Andros, Cycladic blueschist belt, Greece. Lithos 117, 6181.CrossRefGoogle Scholar
Buzaglo-Yoresh, A., Matthews, A. & Garfunkel, Z. 1995. Metamorphic evolution on Andros and Tinos – a comparative study. In Israel Geological Society Annual Meeting 1995 (eds Arkin, Y. & Avigad, D.), p. 16. Jerusalem: Israel Geological Society.Google Scholar
Chatzaras, V., Dörr, W., Finger, F., Xypolias, P. & Zulauf, G. 2012. U–Pb single zircon ages and geochemistry of metagranitoid rocks in the Cycladic Blueschists (Evia Island): implications for the Triassic tectonic setting of Greece. Tectonophysics 595–6, 125–39.Google Scholar
Clarke, G. L., Powell, R. & Fitzherbert, J. A. 2006. The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. Journal of Metamorphic Geology 24, 715–25.Google Scholar
Cliff, R. A. 1985. Isotopic dating in metamorphic belts. Journal of the Geological Society, London 142, 97110.Google Scholar
Dürr, S. 1986. Das Attisch-kykladische Kristallin. In Geologie von Griechenland (ed. Jacobshagen, V.), pp. 116–49. Gebrüder Borntraeger.Google Scholar
Dürr, S., Altherr, R., Keller, J., Okrusch, M. & Seidel, E. 1978. The Median Aegean Crystalline Belt: stratigraphy, structure, metamorphism, magmatism. In Alps, Apennines, Hellenides (eds Closs, H., Roeder, D. H. & Schmidt, K.), pp. 455–77. IUGS Report no.38. Stuttgart: Schweizerbart.Google Scholar
Fu, B., Valley, J. W., Kita, N. T., Spicuzza, M. J., Paton, C., Tsujimori, T., Bröcker, M. & Harlow, G. E. 2010. Multiple origins of zircons in jadeitite. Contributions to Mineralogy and Petrology 159, 769–80.Google Scholar
Gärtner, C., Bröcker, M., Strauss, H. & Farber, K. 2011. Strontium, carbon and oxygen isotope geochemistry of marbles from the Cycladic blueschist belt, Greece. Geological Magazine 148, 511–28.CrossRefGoogle Scholar
Gautier, P. & Brun, J. P. 1994 a. Crustal-scale geometry and kinematics of late-orogenic extension in the central Aegean (Cyclades and Evia Island). Tectonophysics 238, 399424.Google Scholar
Gautier, P. & Brun, J. P. 1994 b. Ductile crust exhumation and extensional detachments in the central Aegean (Cyclades and Evia islands). Geodinamica Acta 7, 5785.Google Scholar
Gautier, P., Brun, J. P., Moriceau, R., Sokoutis, D., Martinod, J. & Jolivet, L. 1999. Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315, 3172.Google Scholar
Katzir, Y., Avigad, D., Matthews, A., Garfunkel, Z. & Evans, B. W. 2000. Origin, HP/LT metamorphism and cooling of ophiolitic melanges in southern Evia (NW Cyclades), Greece. Journal of Metamorphic Geology 18, 699718.Google Scholar
Keay, S. & Lister, G. 2002. African provenance for the metasediments and metaigneous rocks of the Cyclades, Aegean Sea, Greece. Geology 30, 235–38.2.0.CO;2>CrossRefGoogle Scholar
Klein-Helmkamp, U., Reinecke, T. & Stöckert, B. 1995. The aragonite–calcite-transition in LT–HP metamorphic carbonatic rocks from S-Evia, Greece: the microstructural and compositional record. Bochumer Geologische und Geotechnische Arbeiten 44, 7883.Google Scholar
Leake, B. E., Woolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Mandarino, J. A., Maresch, W. V., Nikel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles: report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. American Mineralogist 82, 1019–37.Google Scholar
Lensky, N., Avigad, D., Garfunkel, Z. & Evans, B. W. 1997. The tectono-metamorphic evolution of blueschists in South Evia, Hellenide Orogenic belt (Greece). Israel Geological Society, Annual Meeting 1997, 6667.Google Scholar
Ludwig, K. R. 2005. User's Manual for ISOPLOT/Ex 3.22. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, pp. 71.Google Scholar
Maluski, H., Vergely, P., Bavay, D., Bavay, P. & Katsikatsos, G. 1981. 39Ar/40Ar dating of glaucophanes and phengites in southern Euboa (Greece) geodynamic implications. Bulletin de la Société géologique de France 5, 469–76.Google Scholar
Massonne, H. J. & Schreyer, W. 1987 Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite, and quartz. Contributions to Mineralogy and Petrology 96, 212–24.Google Scholar
Matthews, A. & Schliestedt, M. 1984. Evolution of the blueschist and greenschist facies rocks of Sifnos, Cyclades, Greece. A stable isotope study of subduction related metamorphism. Contributions to Mineralogy and Petrology 88, 150–63.Google Scholar
Mehl, C., Jolivet, L., Lacombe, O., Labrousse, L. & Rimmele, G. 2007. Structural evolution of Andros (Cyclades, Greece): a key to the behaviour of a (flat) detachment within an extending continental crust. In The Geodynamics of the Aegean and Anatolia (eds Taymaz, T., Yilmaz, Y. & Dilek, Y.), pp. 4173. Geological Society of London, Special Publication no. 291.Google Scholar
Miyashiro, A. 1957. The chemistry, optics and genesis of the alkali-amphiboles. Journal of Faculty of Science, University of Tokyo 11, 5783.Google Scholar
Morimoto, N. 1988. Nomenclature of pyroxenes. Mineralogical Magazine 52, 535–50.Google Scholar
Mukhin, P. 1996. The metamorphosed olistostromes and turbidites of Andros Island, Greece, and their tectonic significance. Geological Magazine 133, 697711.Google Scholar
Okrusch, M. & Bröcker, M. 1990. Eclogite facies rocks in the Cycladic blueschist belt, Greece: a review. European Journal of Mineralogy 2, 451–78.Google Scholar
Papanikolaou, D. 1978 a. Geologic Map of Greece. Andros Sheet. I.G.M.E. (Institute of Geology and Mineral Exploration, gen. di. V. Andronopoulos).Google Scholar
Papanikolaou, D. 1978 b. Contribution to the geology of the Aegean Sea; the island of Andros. Annales Geologiques des Pays Helleniques 29 (2), 477553.Google Scholar
Papanikolaou, D. 1987. Tectonic evolution of the Cycladic blueschist belt (Aegean Sea, Greece). In Chemical Transport in Metasomatic Processes (ed. Helgeson, H. C.), pp. 429–50. NATO ASI series. Dordrecht: Reidel.CrossRefGoogle Scholar
Parra, T., Vidal, O. & Jolivet, L. 2002. Relation between the intensity of deformation and retrogression in blueschist metapelites of Tinos Island (Greece) evidenced by chlorite-mica local equilibria. Lithos 63, 4166.CrossRefGoogle Scholar
Patzak, M., Okrusch, M. & Kreuzer, H. 1994. The Akrotiri unit on the island of Tinos, Cyclades, Greece: witness to a lost terrane of Late Cretaceous age. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 194, 211–52.CrossRefGoogle Scholar
Putlitz, B., Cosca, M. A. & Schumacher, J. C. 2005. Prograde mica 40Ar/39Ar growth ages recorded in high pressure rocks (Syros, Cyclades, Greece). Chemical Geology 214, 7998.Google Scholar
Reinecke, T. 1982. Cymrite and celsian in manganese-rich metamorphic rocks from Andros island, Greece. Contributions to Mineralogy and Petrology 79, 333–6.CrossRefGoogle Scholar
Reinecke, T. 1986. Phase relationships of sursassite and other Mn-silicates in highly oxidized, high-pressure metamorphic rocks from Evia and Andros Islands, Greece. Contributions to Mineralogy and Petrology 94, 110–26.Google Scholar
Reinecke, T., Okrusch, M. & Richter, P. 1985. Geochemistry of ferromanganoan metasediments from the island of Andros, Cycladic Blueschist Belt, Greece. Chemical Geology 53, 249–78.Google Scholar
Ring, U., Glodny, J., Will, T. & Thomson, S. 2007. An Oligocene extrusion wedge of blueschist-facies nappes on Evia Island, Aegean Sea, Greece: implications for the early exhumation of high-pressure rocks. Journal of Geological Society, London 164, 637–57.Google Scholar
Ring, U., Glodny, J., Will, T. & Thomson, S. 2010. The Hellenic subduction system: high-pressure metamorphism, exhumation, normal shear zoning, and large-scale extension. Annual Review of Earth and Planetary Sciences 38, 4576.Google Scholar
Shaked, Y., Avigad, D. & Garfunkel, Z. 2000. Alpine high-pressure metamorphism at the Almyropotamos window (southern Evia, Greece). Geological Magazine 137, 367–80.Google Scholar
Sperry, A. 2000. Pseudomorphs after lawsonite as an indication of pressure-temperature evolution in blueschists from Syros, Greece. 13th Keck Symposium Volume, pp. 52–5. Keck Geology Consortium.Google Scholar
Steiger, R. H. & Jäger, E. 1977. Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.Google Scholar
Trotet, F., Vidal, O. & Jolivet, L. 2001. Exhumation of Syros and Sifnos metamorphic rocks (Cyclades, Greece). New constraints on the P–T paths. European Journal of Mineralogy 13, 901–20.CrossRefGoogle Scholar
Villa, I. M. 1998. Isotopic closure. Terra Nova 10, 42–7.Google Scholar
Wijbrans, J. R. & McDougall, I. 1988. Metamorphic evolution of the Attic Cycladic Metamorphic Belt on Naxos (Cyclades, Greece) utilizing 40Ar/39Ar age spectrum measurements. Journal of Metamorphic Geology 6, 571–94.CrossRefGoogle Scholar
Wijbrans, J. R., Schliestedt, M. & York, D. 1990. Single grain argon laser probe dating of phengites from the blueschist to greenschist transition on Sifnos (Cyclades, Greece). Contributions to Mineralogy and Petrology 104, 582–93.Google Scholar
Zeffren, S., Avigad, D., Heimann, A. & Gvirtzman, Z. 2005. Age resetting of hanging wall rocks above a low-angle detachment shear zone: Tinos Island (Aegean Sea). Tectonophysics 400, 125.Google Scholar
Ziv, A., Katzir, Y., Avigad, D. & Garfunkel, Z. 2010. Strain development and kinematic significance of the Alpine folding on Andros (western Cyclades, Greece). Tectonophysics 488, 248–55.Google Scholar
Supplementary material: File

Huyskens Supplementary Material

Figures S1-S2 and Tables S1-S5

Download Huyskens Supplementary Material(File)
File 3.9 MB