Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T22:42:45.595Z Has data issue: false hasContentIssue false

The St Lawrence Platform and Appalachian deformation front in the St Lawrence Estuary and adjacent areas (Quebec, Canada): structural complexity revealed by magnetic and seismic imaging

Published online by Cambridge University Press:  02 January 2014

NICOLAS PINET*
Affiliation:
Natural Resources Canada, Geological Survey of Canada, 490 rue de la Couronne, Quebec, Quebec, G1K 9A9
DENIS LAVOIE
Affiliation:
Natural Resources Canada, Geological Survey of Canada, 490 rue de la Couronne, Quebec, Quebec, G1K 9A9
PIERRE KEATING
Affiliation:
Natural Resources Canada, Geological Survey of Canada, 615 Booth Street, Ottawa, Ontario, K1A 0E9
MATHIEU DUCHESNE
Affiliation:
Natural Resources Canada, Geological Survey of Canada, 490 rue de la Couronne, Quebec, Quebec, G1K 9A9
*
Author for correspondence: [email protected]

Abstract

New magnetic and seismic datasets offer a unique opportunity to document the geometry of the Appalachian front in a poorly studied segment of the orogen. Interpretation of high-resolution magnetic data allows, for the first time, the documentation of the contact between the autochthonous St Lawrence Platform and the Appalachians and highlights the regional significance of previously poorly documented ENE faults that experienced post-Ordovician strike-slip motion. Seismic data reveal tectonic slices in the foreland domain underlying the Appalachians and show that the depth of the décollement at the base of the Appalachian tectonic wedge varies significantly. Taken together, geological, magnetic and seismic data suggest that the geometry of the Appalachian front exhibits significant variations in map and cross-section views and recorded a polyphased structural history.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bally, A. W., Gordy, P. L. & Stewart, G. A. 1966. Structure, seismic data, and orogenic evolution of southern Canadian Rocky Mountains. Bulletin of Canadian Petroleum Geology 14, 337–81.Google Scholar
Belt, E. S., Riva, J. & Bussières, L. 1979. Revision and correlation of late Middle Ordovician stratigraphy northeast of Quebec City. Canadian Journal of Earth Sciences 16, 1467–83.Google Scholar
Bourque, P.-A., Malo, M. & Kirkwood, D. 2001. Stratigraphy, tectono-sedimentary evolution and paleogeography of the post-Taconian – pre-Carboniferous Gaspé Belt: an overview. Bulletin of Canadian Petroleum Geologists 49, 186201.Google Scholar
Brisebois, D. & Nadeau, J. 2003. Géologie de la Gaspésie et du Bas St-Laurent. DV 2003–08, 1:250 000 map. Ministère des Ressources Naturelles de la Faune et des Parcs, Québec.Google Scholar
Buiter, S. J. H. 2012. A review of brittle compressional wedge models. Tectonophysics 530–531, 117.Google Scholar
Carignan, J., Gariepy, C. & Hillaire-Marcel, C. 1997. Hydrothermal fluids during Mesozoic reactivation of the St. Lawrence rift system, Canada: C, O, Sr, and Pb isotopic characterization. Chemical Geology 37, 121.CrossRefGoogle Scholar
Castonguay, S., Dietrich, J., Lavoie, D. & Laliberté, J.-Y. 2010. Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: insights from interpretation of MRNQ seismic reflection data. Bulletin of Canadian Petroleum Geology 58, 219–34.CrossRefGoogle Scholar
Cooper, M., Weissenberger, J., Knight, I., Hostad, D., Gillepsie, D., Williams, H., Burden, E., Porter-Chaudry, J., Rae, D. & Clark, E. 2001. Basin evolution in western Newfoundland: new insights from hydrocarbon exploration. American Association of Petroleum Geologists Bulletin 85, 393418.Google Scholar
Doig, R. & Barton, , Jr, J. M.. 1968. Ages of carbonatites and other alkaline rocks in Quebec. Canadian Journal of Earth Sciences 5, 1401–7.Google Scholar
Glasmacher, U. A., Lopez-Martinez, A., Tremblay, A., Zentilli, M., Wagner, G. A. & Balcazar, M. 2002. Cretaceous to Tertiary tectono-thermal evolution of the Laurentian margin in Québec, Canada – preliminary results. Geotemas 4, 83–7.Google Scholar
Hiscott, R. N. 1995. Middle Ordovician clastic rocks (Humber zone and St-Lawrence Platform). In Geology of the Appalachian–Caledonian Orogen in Canada and Greenland (ed. Williams, H.), pp. 8798. Geological Survey of Canada, Geology of Canada, no. 6.Google Scholar
Konstantinovskaya, E. A., Rodriguez, D., Kirkwood, D., Harris, L. B. & Thériault, R. 2009. Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec Appalachians and analogue models. Bulletin of Canadian Petroleum Geology 57, 3462.Google Scholar
Kumarapelli, P. S. 1985. Vestiges of the Iapetan rifting in the craton West of the Northern Appalachians. Geosciences Canada 12, 54–9.Google Scholar
Kumarapelli, P. S. & Saull, V. A. 1966. The St. Lawrence valley system: a north American equivalent of the east African valley system. Canadian Journal Earth Sciences 3, 639–58.CrossRefGoogle Scholar
Lavoie, D. 1994. Diachronous tectonic collapse of the Ordovician continental margin, eastern Canada: comparison between the Québec reentrant and the St. Lawrence promontory. Canadian Journal Earth Sciences 31, 1309–19.Google Scholar
Lavoie, D., Burden, E. & Lebel, D. 2003. Stratigraphic framework for the Cambrian-Ordovician rift and passive margin successions from southern Québec to western Newfoundland. Canadian Journal of Earth Sciences 40, 177205.Google Scholar
Lebel, D. & Hubert, C. 1995 a. Géologie de la région de Saint-Raphaël (Chaudière-Appalaches). ET 93-02. Ministère des Ressources Naturelles du Québec.Google Scholar
Lebel, D. & Hubert, C. 1995 b. Géologie de la région de Saint-Malachie (Chaudière-Appalaches). ET 93-03. Ministère des Ressources Naturelles du Québec.Google Scholar
Lemieux, Y., Tremblay, A. & Lavoie, D. 2003. Structural analysis of supracrustal faults in the Charlevoix area, Québec: relations to impact cratering and the St. Lawrence fault system. Canadian Journal Earth Sciences 40, 221–35.CrossRefGoogle Scholar
Lynch, G. 1998 Characteristics of the Taconic orogenic front, northeastern Québec Appalachians. In Current Research 1998-D, pp. 19. Geological Survey of Canada.Google Scholar
Malo, M., Ruffet, G., Pincivy, A. & Tremblay, A. 2008. 40Ar/39Ar study of oceanic and continental deformation processes during an oblique collision: Taconian orogeny in the Quebec reentrant of the Canadian Appalachians. Tectonics 27, TC4001.Google Scholar
O'Brien, T. M. & van der Pluijm, B. 2012. Timing of Iapetus Ocean rifting from Ar geochronology of pseudotachylites in the St. Lawrence rift system of southern Quebec. Geology 40, 443–6.CrossRefGoogle Scholar
Pincivy, A., Malo, M., Ruffet, G., Tremblay, A. & Sacks, P. 2003. Regional metamorphism of the Appalachian Humber Zone of Gaspé Peninsula: 40Ar/39Ar evidence for crustal thickening during the Taconian orogeny. Canadian Journal of Earth Sciences 40, 301–15.Google Scholar
Pinet, N. 2011 a. Hinterland-directed transtensional faulting at an orogen structural front: the example of the Cap-Chat Mélange, Quebec Appalachians. Geological Society of America Bulletin 123, 2256–65.Google Scholar
Pinet, N. 2011 b. Deformation in the Utica Shale and Lorraine Group, St. Lawrence Platform, Quebec. Geological Survey of Canada, Open File 6952, 14 pp.Google Scholar
Pinet, N. 2013. Gaspé belt subsurface geometry in the northern Québec Appalachians as revealed by an integrated geophysical and geological study: 2 – seismic interpretation and potential field modelling results. Tectonophysics 588, 100–17.Google Scholar
Pinet, N., Brake, V, Campbell, C., Duchesne, M., Gagné, H. & Bolduc, A. 2011. Surficial geology and shaded seafloor relief, St. Lawrence Estuary, Quebec/Géologie de surface et relief du fond marin, estuaire du Saint-Laurent, Québec. Map 2161A, scale: 1:250,000. Geological Survey of Canada.CrossRefGoogle Scholar
Pinet, N., Duchesne, M. & Lavoie, D. 2010. Linking a linear pockmark train with a buried Paleozoic structure: a case study from the St. Lawrence Estuary. Geo-Marine Letters 30, 517–22.Google Scholar
Pinet, N., Duchesne, M., Lavoie, D., Bolduc, A. & Long, B. 2008 a. Surface and subsurface signatures of gas seepage in the St. Lawrence Estuary (Canada): significance to hydrocarbon exploration. Marine and Petroleum Geology 25, 271–88.Google Scholar
Pinet, N., Keating, P., Lavoie, D. & Brouillette, P. 2010. Forward potential-field modelling of the Appalachian orogen in the Gaspé Peninsula (Québec, Canada): implications for the extent of Iapetan rift magmatism and the geometry of the Taconian orogenic wedge. American Journal of Science 310, 89110.Google Scholar
Pinet, N., Keating, P., Lavoie, L., Dietrich, J., Duchesne, M. & Brake, V. 2012. Revisiting the Appalachian structural front and offshore Anticosti Basin (northern Gulf of St. Lawrence, Canada) by integrating old and new geophysical datasets. Marine and Petroleum Geology 32, 5062.Google Scholar
Pinet, N., Lavoie, D, Brouillette, P., Dion, D. J., Keating, P., Brisebois, D., Malo, M. & Castonguay, S. 2005. Gravimetric and aeromagnetic atlas of the Gaspé Peninsula. Geological Survey of Canada, Open File 5020, 68 pp.CrossRefGoogle Scholar
Pinet, N., Lavoie, D., Keating, P. & Brouillette, P. 2008 b. Gaspé belt subsurface geometry in the northern Québec Appalachians as revealed by an integrated geophysical and geological study: 1 – potential field mapping. Tectonophysics, 460, 3454.Google Scholar
Pinet, N. & Tremblay, A. 1995. Tectonic evolution of the Québec-Maine Appalachians: from oceanic spreading to obduction and collision in the northern Appalachians. American Journal of Science 295, 173200.Google Scholar
Price, R. A. 1981. The Cordilleran foreland thrust and fold belt in the southern Canadian Rocky Mountains. In Thrust and Nappe Tectonics (eds McClay, K. J. & Price, N. J.), pp. 427–48. Geological Society of London, Special Publication no. 9.Google Scholar
Puffer, J. H. 2002. A Late Neoproterozoic eastern Laurentian superplume: location, size, chemical composition and environmental impact. American Journal of Science 302, 127.CrossRefGoogle Scholar
Rhéaume, P. & Schrijver, K. 1991. Structural analysis of Bic fault, a thust-related strike-slip fault of the external domain of the Taconic Orogen, Appalachians, Québec, and metallogenic implications. Canadian Journal of Earth Sciences 28, 788–99.Google Scholar
Sacks, P. E., Malo, M., Trzcienski, W. E., Pincivy, A. & Gosselin, P. 2004. Taconian and Acadian transpression between the internal Humber Zone and the Gaspé Belt in the Gaspé Peninsula: tectonic history of the Shickshock Sud fault zone. Canadian Journal of Earth Sciences 41, 635–53.Google Scholar
Sasseville, C., Clauer, N. & Tremblay, A. 2012. Timing of fault reactivation in the upper crust of the St. Lawrence rift system, Canada, by K-Ar dating of illite-rich fault rocks. Canadian Journal of Earth Sciences 49, 637–52.Google Scholar
Sasseville, C., Tremblay, A., Clauer, N. & Liewig, N. 2008. K-Ar age constraints on the evolution of polydeformed fold-thrust belts: the case of the northern Appalachians (southern Quebec). Journal of Geodynamics 45, 99119.Google Scholar
Schneider, W. A. 1978. Integral formulation for migration in two and three dimensions. Geophysics 43, 4976.CrossRefGoogle Scholar
SOQUIP (Société Québecoise d'Initiatives Pétrolières) 1987. Estuary and Gulf St. Lawrence: geological, geophysical and geochemical data integration. Geological Survey of Canada, Open File 1721, 74 pp.Google Scholar
St. Julien, P. & Hubert, C. 1975. Evolution of the Taconian orogen in the Québec Appalachians. American Journal of Science 275–A, 337–62.Google Scholar
Stockmal, G. S., Slingsby, A. & Waldron, J. W. F. 2004. Basement-involved inversion at the Appalachian structural front, western Newfoundland: an interpretation of seismic reflection data with implications for petroleum prospectivity. Bulletin of Canadian Petroleum Geology 52, 215–33.Google Scholar
Suppe, J. 1985. Principles of Structural Geology. Prentice-Hall, 537 pp.Google Scholar
Talwani, M., Worzel, J. L. & Landisman, M. 1959. Rapid gravity computations for two-dimensional bodies with application to the Mendicina sub-marine fracture zone. Journal of Geophysical Research 64, 4059.Google Scholar
Todd, B. J., Occhietti, S. & Burns, R. A. 1991. Seismic reflection mapping of bedrock topography and Quaternary seismostratigraphy in the Middle St. Lawrence Estuary, île aux Coudres, Quebec. In Current Research 91D, pp. 53–9. Geological Survey of Canada.Google Scholar
Tremblay, A., Long, B. & Massé, M. 2003. Supracrustal faults of the St. Lawrence rift system, Québec: kinematics and geometry as revealed by field mapping and marine seismic reflection data. Tectonophysics 369, 231–52.Google Scholar
Tremblay, A. & Pinet, N. 1994. Distribution and characteristics of the Taconian and Acadian deformation, southern Québec Appalachians. Geological Society of America Bulletin 106, 1172–81.2.3.CO;2>CrossRefGoogle Scholar
Tremblay, A., Roden-Tice, M. K., Brandt, J. A. & Megan, T. W. 2013. Mesozoic fault reactivation along the St. Lawrence rift system, eastern Canada: thermochronologic evidence from apatite fission-track dating. Geological Society of America Bulletin 125, 794810.CrossRefGoogle Scholar
Vallée, M. & Dubuc, F 1970. The St-Honoré carbonatite complex, Quebec. The Canadian Institute of Mining and Metallurgy Transactions 73, 346–56.Google Scholar
Williams, H. 1979. Appalachian orogen in Canada. Canadian Journal of Earth Sciences 16, 792807.Google Scholar