Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-13T03:19:55.920Z Has data issue: false hasContentIssue false

A sink- or a source-driven carbon cycle at the geological timescale? Relative importance of palaeogeography versus solid Earth degassing rate in the Phanerozoic climatic evolution

Published online by Cambridge University Press:  22 December 2017

YVES GODDÉRIS*
Affiliation:
Géosciences Environnement Toulouse, CNRS, Toulouse, France
YANNICK DONNADIEU
Affiliation:
CEREGE, CNRS, Aix-en-Provence, France
*
Author for correspondence: [email protected]

Abstract

The Phanerozoic evolution of the atmospheric CO2 level is controlled by the fluxes entering or leaving the exospheric system. In this contribution, we focus on the role played by the palaeogeographic configuration on the efficiency of the CO2 sink by continental silicate weathering, and on the impact of the magmatic degassing of CO2. We use the spatially resolved numerical model GEOCLIM to compute the response of the silicate weathering and atmospheric CO2 to continental drift for 22 time slices of the Phanerozoic. Regarding the CO2 released by the magmatic activity, we reconstruct several Phanerozoic histories of this flux, based on published indices. Again using the GEOCLIM model, we calculate the CO2 evolution for each degassing scenario. We show that the palaeogeographic setting is a main driver of the climate from 540 Ma to about the beginning of the Jurassic, with the noticeable exception of the Late Palaeozoic ice age. Regarding the role of the magmatic degassing, the various reconstructions do not converge towards a single signal, and thus introduce large uncertainties in the calculated CO2 level over time. Nevertheless, the continental dispersion, which prevails since the Jurassic, promotes CO2 consumption by weathering and forces atmospheric CO2 to stay low. Warm climates of the ‘middle’ Cretaceous and early Cenozoic require enhanced CO2 degassing by magmatic activity.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, R. A. 2004. The Phanerozoic Carbon Cycle. Oxford: Oxford University Press, 150 pp.Google Scholar
Bodin, S., Meissner, P., Jansen, N. M. M., Steuber, T. & Mutterlose, J. 2015. Large igneous provinces and organic carbon burial: controls on global temperature and continental weathering during the Early Cretaceous. Global and Planetary Change 133, 238–53.Google Scholar
Carretier, S., Goddéris, Y., Delannoy, T. & Rouby, D. 2014. Mean bedrock-to-saprolite conversion and erosion rates during mountain growth and decline. Geomorphology 209, 3952.Google Scholar
Cogné, J. P. & Humler, E. 2006. Trends and rhythms in global seafloor generation rate. Geochemistry, Geophysics, Geosystems 7 (3), Q03011. doi: 10.1029/2005GC001148.Google Scholar
Coogan, L. A. & Dosso, S. E. 2015. Alteration of ocean crust provides a strong temperature dependent feedback on the geological carbon cycle and is a primary driver of the Sr-isotopic composition of seawater. Earth and Planetary Science Letters 415, 3846.Google Scholar
Dera, G., Brigaud, B., Monna, F., Laffont, R., Pucéat, E., Deconinck, J. F., Pellenard, P., Joachimski, M. M. & Durlet, C. 2011. Climatic ups and downs in a disturbed Jurassic world. Geology 39 (3), 215–18.Google Scholar
Donnadieu, Y., Goddéris, Y., Pierrehumbert, R., Dromart, G., Jacob, R. & Fluteau, F. 2006. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochemistry, Geophysics, Geosystems 7 (11), Q11019. doi: 10.1029/2006GC001278.Google Scholar
Engebretson, D. C., Kelley, K. P., Cashman, H. J. & Richards, M. A. 1992. 180 million years of subduction. GSA Today 2 (5), 93–5, 100.Google Scholar
France‐Lanord, C. & Derry, L. 1997. Organic carbon burial forcing of the carbon cycle from Himalayan erosion. Nature 390 (6655), 65–7.Google Scholar
Friedrich, O., Norris, R. D. & Erbacher, J. 2012. Evolution of middle to Late Cretaceous oceans: a 55 m.y. record of Earth's temperature and carbon cycle. Geology 40 (2), 107–10.Google Scholar
Froelich, F. & Misra, S. 2014. Was the late Paleocene-early Eocene hot because Earth was flat? An ocean lithium isotope view of mountain building, continental weathering, carbon dioxide, and Earth's Cenozoic climate. Oceanography 27 (1), 3649.Google Scholar
Gaffin, S. 1987. Ridge volume dependence on seafloor generation rate and inversion using long term sealevel change. American Journal of Science 287 (6), 596611.Google Scholar
Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. 1999. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chemical Geology 159 (1–4), 330.Google Scholar
Galy, V., France-Lanord, C., Beyssac, O., Faure, P., Kudrass, H. & Palhol, F. 2007. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–10.Google Scholar
Gibbs, M. T., Bluth, G. J. S., Fawcett, P. J. & Kump, L. R. 1999. Global chemical erosion over the last 250 MY: variations due to changes in paleogeography, paleoclimate, and paleogeology. American Journal of Science 299 (7–9), 611–51.Google Scholar
Goddéris, Y., Donnadieu, Y., Carretier, S., Aretz, M., Dera, G., Macouin, M. & Regard, V. 2017. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geoscience 10 (5): 382–6.Google Scholar
Goddéris, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. 2014. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Science Reviews 128, 122–38.Google Scholar
Goddéris, Y., Donnadieu, Y., Tombozafy, M. & Dessert, C. 2008. Shield effect on continental weathering: implication for climatic evolution of the Earth at the geological timescale. Geoderma 145 (3–4), 439–48.Google Scholar
Gough, D. O. 1981. Solar interior structure and luminosity variations. Solar Physics 74, 2134.Google Scholar
Hoareau, G., Bomou, B., van Hinsbergen, D. J. J., Carry, N., Marquer, D., Donnadieu, Y., Le Hir, G., Vrielynck, B. & Walter-Simonnet, A.-V. 2015. Did high Neo-Tethys subduction rates contribute to early Cenozoic warming? Climate of the Past 11 (12), 1751–67.Google Scholar
Kump, L. R. & Arthur, M. A. 1997. Global chemical erosion during the Cenozoic: weatherability balances the budgets. In Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.), pp. 400–29. New York: Springer.Google Scholar
Larson, R. L. 1991. Latest pulse of Earth: evidence for a mid-Cretaceous superplume. Geology 19, 547–50.Google Scholar
Lee, C.-T.A., Shen, B., Slotnick, B. S., Liao, K., Dickens, G. R., Yokoyama, Y., Lenardic, A., Dasgupta, R., Jellinek, M., Lackey, J. S., Schneider, T. & Tice, M. M. 2013. Continental arc-island arc fluctuations, growth of crustal carbonates, and long-term climate change. Geosphere 9 (1), 2136.Google Scholar
Lefebvre, V., Donnadieu, Y., Goddéris, Y., Fluteau, F. & Hubert-Théou, L. 2013. Was the Antarctic glaciation delayed by a high degassing rate during the early Cenozoic? Earth and Planetary Science Letters 371–372, 203–11.Google Scholar
Maffre, P., Ladant, J.-B., Donnadieu, Y., Sepulchre, P. & Goddéris, Y. 2017. The influence of orography on modern ocean circulation. Climate Dynamics 48 (7–8): 2123–34.Google Scholar
Marshall, H. G., Walker, J. C. G. & Kuhn, W. R. 1988. Long-term climate change and the geochemical cycle of carbon. Journal of Geophysical Research 93, 791801.Google Scholar
McKenzie, N. R., Horton, B. K., Loomis, S. E., Stockli, D. F., Planavsky, N. J. & Lee, C.-T. A. 2016. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352 (6284), 444–7.Google Scholar
Mills, B., Daines, S. J. & Lenton, T. M. 2014. Changing tectonic controls on the long-term carbon cycle from Mesozoic to present. Geochemistry Geophysics Geosystems 15, 4866–84.Google Scholar
Montanez, I. P. 2016. A late Paleozoic climate window of opportunity. Proceedings of the National Academy of Sciences 113, 2334–6.Google Scholar
Montanez, I. P. & Poulsen, C. J. 2013. The Late Paleozoic ice age: an evolving paradigm. Annual Review of Earth and Planetary Sciences 41, 629–56.Google Scholar
Nardin, E., Goddéris, Y., Donnadieu, Y., Le Hir, G., Blakey, R. C., Pucéat, E. & Aretz, M. 2011. Modeling the early Paleozoic long-term climatic trend. Bulletin of the Geological Society of America 123 (5), 1181–92.Google Scholar
Rowley, D. B. 2002. Rate of plate creation and destruction: 180 Ma to present. Geological Society of America Bulletin 114 (8), 927–33.Google Scholar
Royer, D. L. 2014. Atmospheric CO2 and O2 during the Phanerozoic: tools, patterns, and impacts. In Treatise on Geochemistry (Second Edition) (eds Holland, H. & Turekian, K.), pp. 251–67. Oxford: Elsevier.Google Scholar
Royer, D. L., Donnadieu, Y., Park, J., Kowalczyk, J. & Goddéris, Y. 2014. Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF. American Journal of Science 314, 1259–83.Google Scholar
Schaller, M. F., Wright, J. D. & Kent, D. V. 2015. A 30 Myr record of Late Triassic atmospheric pCO2 variation reflects a fundamental control of the carbon cycle by changes in continental weathering. Geological Society of America Bulletin 127, 661–71.Google Scholar
Seton, M., Gaina, C., Müller, R. D. & Heine, C. 2009. Mid-Cretaceous seafloor spreading pulse: fact or fiction. Geology 37 (8), 687–90.Google Scholar
Taylor, L. L., Banwart, S. A., Valdes, P. J., Leake, J. R. & Beerling, D. J. 2012. Evaluating the effects of terrestrial ecosystems, climate and carbon dioxide on weathering over geological time: a global-scale process-based approach. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 565–82.Google Scholar
Van der Meer, D. G., Zeebe, R. E., van Hinsbergen, D. J. J., Sluijs, A., Spakman, W. & Torsvik, T. H. 2014. Plate tectonic controls on atmospheric CO2 levels since the Triassic. Proceedings of the National Academy of Sciences 111 (12), 4380–5.Google Scholar
Vigier, N. & Goddéris, Y. 2015. A new approach for modeling Cenozoic oceanic lithium isotope paleo-variations: the key role of climate. Climate of the Past 11, 635–45.Google Scholar
Walker, J. C. G., Hays, P. B. & Kasting, J. F. 1981. A negative feedback mechanism for the long-term stabilization of Earth's surface temperature. Journal of Geophysical Research 86 (C10), 9776.Google Scholar
Supplementary material: File

Godderis and Donnadieu supplementary material

Godderis and Donnadieu supplementary material 1

Download Godderis and Donnadieu supplementary material(File)
File 2.6 MB