Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T07:24:42.941Z Has data issue: false hasContentIssue false

Seep deposits from northern Istria, Croatia: a first glimpse into the Eocene seep fauna of the Tethys region

Published online by Cambridge University Press:  15 September 2014

M. NATALICCHIO
Affiliation:
Department of Earth Sciences, University of Torino, 10125 Torino, Italy
J. PECKMANN*
Affiliation:
Department of Geodynamics and Sedimentology, Centre for Earth Sciences, University of Vienna, 1090 Vienna, Austria
D. BIRGEL
Affiliation:
Department of Geodynamics and Sedimentology, Centre for Earth Sciences, University of Vienna, 1090 Vienna, Austria
S. KIEL
Affiliation:
Geobiology Group and Courant Centre Geobiology, Geoscience Centre, University of Göttingen, 37077 Göttingen, Germany
*
Author for correspondence: [email protected]

Abstract

Three isolated limestone deposits and their fauna are described from a middle Eocene Flysch succession in northwestern Istria, Croatia. The limestones are identified as ancient methane-seep deposits based on fabrics and characteristic mineral phases, δ13Ccarbonate values as low as −42.2 ‰ and 13C-depleted lipid biomarkers indicative of methane-oxidizing archaea. The faint bedding of the largest seep deposit, the great dominance of authigenic micrite over early diagenetic fibrous cement, as well as biomarker patterns indicate that seepage was diffusive rather than advective. Apart from methanotrophic archaea, aerobic methanotrophic bacteria were present at the Eocene seeps as revealed by 13C-depleted lanostanes and hopanoids. The observed corrosion surfaces in the limestones probably reflect carbonate dissolution caused by aerobic methanotrophy. The macrofauna consists mainly of chemosymbiotic bivalves such as solemyids (Acharax), thyasirids (Thyasira) and lucinids (Amanocina). The middle Eocene marks the rise of the modern seep fauna, but so far the fossil record of seeps of this age is restricted to the North Pacific region. The taxa found at Buje originated during the Cretaceous Period, whereas taxa typical of the modern seep fauna such as bathymodiolin mussels and vesicomyid clams are absent. Although this is only a first palaeontological glimpse into the biogeography during the rise of the modern seep fauna, it agrees with biogeographic investigations based on the modern vent fauna indicating that the dominant taxa of the modern seep fauna first appeared in the Pacific Ocean.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arning, E. T., Birgel, D., Schulz-Vogt, H. N., Holmkvist, L., Jørgensen, B. B., Larsson, A. & Peckmann, J. 2008. Lipid biomarker patterns of phosphogenic sediments from upwelling regions. Geomicrobiology Journal 25, 6982.Google Scholar
Amano, K. & Kiel, S. 2007. Fossil vesicomyid bivalves from the North Pacific region. The Veliger 49, 270–93.Google Scholar
Bachraty, C., Legendre, P. & Desbruyères, D. 2009. Biogeographic relationships among deep-sea hydrothermal vent faunas at global scale. Deep-Sea Research I 56, 1371–8.Google Scholar
Baco, A. R., Rowden, A. A., Levin, L. A., Smith, C. R. & Bowden, D. A. 2010. Initial characterization of cold seep faunal communities on the New Zealand Hikurangi margin. Marine Geology 272, 251–9.CrossRefGoogle Scholar
Baker, M. C., Ramirez-Llodra, E., Tyler, P. A., German, C. R., Boetius, A., Cordes, E. E., Dubilier, N., Fisher, C. R., Levin, L. A., Metaxas, A., Rowden, A. A., Santos, R. S., Shank, T. M., Van Dover, C. L., Young, C. M. & Warén, A. 2010. Biogeography, ecology, and vulnerability of chemosynthetic ecosystems in the deep sea. In Life in the World's Oceans: Diversity, Distribution, and Abundance (ed. McIntyre, A.), pp. 161–82. Wiley-Blackwell.CrossRefGoogle Scholar
Barbieri, R. & Cavalazzi, B. 2005. Microbial fabrics from Neogene cold seep carbonates, Northern Apennine, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 143–55.Google Scholar
Birgel, D., Elvert, M., Han, X. & Peckmann, J. 2008. 13C-depleted biphytanic diacids as tracers of past anaerobic oxidation of methane. Organic Geochemistry 39, 152–6.CrossRefGoogle Scholar
Birgel, D. & Peckmann, J. 2008. Aerobic methanotrophy at ancient marine methane seeps: a synthesis. Organic Geochemistry 39, 1659–67.Google Scholar
Birgel, D., Peckmann, J., Klautzsch, S., Thiel, V. & Reitner, J. 2006 a. Anaerobic and aerobic oxidation of methane at Late Cretaceous seeps in the Western Interior Seaway, USA. Geomicrobiology Journal 23, 565–77.CrossRefGoogle Scholar
Birgel, D., Thiel, V., Hinrichs, K.-U., Elvert, M., Campbell, K. A., Reitner, J., Farmer, J. D. & Peckmann, J. 2006 b. Lipid biomarker patterns of methane-seep microbialites from the Mesozoic convergent margin of California. Organic Geochemistry 37, 1289–302.Google Scholar
Blumenberg, M., Krüger, M., Nauhaus, K., Talbot, H. M., Oppermann, B. I., Seifert, R., Pape, T. & Michaelis, W. 2006. Biosynthesis of hopanoids by sulphate-reducing bacteria (genus Desulfovibrio). Environmental Microbiology 8, 1220–7.Google Scholar
Blumenberg, M., Seifert, R., Reitner, J., Pape, T. & Michaelis, W. 2004. Membrane lipid patterns typify distinct anaerobic methanotrophic consortia. Proceedings of the National Academy of Sciences of the United States of America 101, 11111–6.Google Scholar
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U. & Pfannkuche, O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407, 623–6.Google Scholar
Campbell, K. A. 2006. Hydrocarbon seep and hydrothermal vent paleonvironments and paleontology: past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology 232, 362407.CrossRefGoogle Scholar
Campbell, K. A. & Bottjer, D. J. 1995. Peregrinella: an Early Cretaceous cold-seep-restricted brachiopod. Paleobiology 24, 461–78.Google Scholar
Campbell, K. A., Farmer, J. D. & Des Marais, D. 2002. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: carbonate geochemistry, fluids and palaeoenvironments. Geofluids 2, 6394.Google Scholar
Campbell, K. A., Francis, D. A., Collins, M., Gregory, M. R., Nelson, C. S., Greinert, J. & Aharon, P. 2008. Hydrocarbon seep-carbonates of a Miocene forearc (East Coast Basin), North Island, New Zealand. Sedimentary Geology 204, 83105.Google Scholar
Chevalier, N., Bouloubassi, I., Birgel, D., Taphanel, H.-M. & López-García, P. 2013. Microbial methane turnover at Marmara Sea cold seeps: a combined 16S rRNA and lipid biomarker investigation. Geobiology 11, 5571.Google Scholar
Clari, P., Fornara, L., Ricci, B. & Zuppi, G. M. 1994. Methane-derived carbonates and chemosymbiotic communities of Piedmont (Miocene, northern Italy): an update. Geo-Marine Letters 14, 201–9.CrossRefGoogle Scholar
Clari, P. A., Gagliardi, C., Governa, M. E., Ricci, B. & Zuppi, G. M. 1988. I Calcari di Marmorito: una testimonianza di processi diagenetici in presenza di metano. Bollettino del Museo Regionale di Scienze Naturali di Torino 5, 197216.Google Scholar
Clari, P., Dela Pierre, F., Martire, L. & Cavagna, S. 2009. The Cenozoic CH4-derived carbonates of Monferrato (NW Italy): a solid evidence of fluid circulation in the sedimentary column. Marine Geology 265, 167–84.Google Scholar
Conti, S. & Fontana, D. 1999. Miocene chemoherms of the northern Apennines, Italy. Geology 27, 927–30.Google Scholar
Conti, S. & Fontana, D. 2005. Anatomy of seep-carbonates: ancient examples from the Miocene of the northern Apennines (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 227, 156–75.CrossRefGoogle Scholar
Dela Pierre, F., Martire, L., Natalicchio, M., Clari, P. & Petrea, C. 2010. Authigenic carbonates in Upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy): vestiges of an ancient gas hydrate stability zone? Geological Society of America Bulletin 122, 9941010.Google Scholar
Delecat, S., Peckmann, J. & Reitner, J. 2001. Non-rigid cryptic sponges in oyster patch reefs (Lower Kimmeridgian, Langenberg/Oker, Germany). Facies 45, 231–54.Google Scholar
Drobne, K. & Pavlovec, R. 1991. Paleocene and Eocene beds in Slovenia and Istria. Introduction to the Paleogene SW Slovenia and Istria. Field and Guidebook IGCP Project 286 “Early Paleogene Benthos”, Second Meeting, pp 717.Google Scholar
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S. & Visser, P. T. 2009. Processes of carbonate precipitation in modern microbial mats. Earth-Science Reviews 96, 141–62.Google Scholar
Eickhoff, M., Birgel, D., Talbot, H. M., Peckmann, J. & Kappler, A. 2013. Bacteriohopanoid inventory of Geobacter sulfurreducens and Geobacter metallireducens . Organic Geochemistry 58, 107–14.CrossRefGoogle Scholar
Elvert, M., Boetius, A., Knittel, K. & Jørgensen, B. B. 2003. Characterization of specific membrane fatty acids as chemotaxonomic markers for sulphate-reducing bacteria involved in anaerobic oxidation of methane. Geomicrobiology Journal 20, 403–19.Google Scholar
Elvert, M., Suess, E. & Whiticar, M. J. 1999. Anaerobic methane oxidation associated with marine gas hydrates: superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids. Naturwissenschaften 86, 295300.CrossRefGoogle Scholar
Feng, D., Chen, D. & Peckmann, J. 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova 21, 4956.Google Scholar
Gaillard, C., Rio, M. & Rolin, Y. 1992. Fossil chemosynthetic communities related to vents or seeps in sedimentary basins: the pseudobioherms of southeastern France compared to other world examples. Palaios 7, 451–65.Google Scholar
Gill, F. L., Harding, I. C., Little, C. T. S. & Todd, J. A. 2005. Palaeogene and Neogene cold seep communities in Barbados, Trinidad and Venezuela: an overview. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 191209.CrossRefGoogle Scholar
Goedert, J. L. & Kaler, K. L. 1996. A new species of Abyssochrysos (Gastropoda: Loxonematoidea) from a Middle Eocene cold-seep carbonate in the Humptulips Formation, western Washington. The Veliger 39, 6570.Google Scholar
Goedert, J. L. & Squires, R. L. 1990. Eocene deep-sea communities in localized limestones formed by subduction-related methane seeps, southwestern Washington. Geology 18, 1182–5.Google Scholar
Gohrbandt, K., Kollmann, K., Küpper, H., Papp, A., Prey, S., Wieseneder, H. & Woletz, G. 1960. Beobachtungen im Flysch von Triest. Verhandlungen der Geologischen Bundesanstalt 1960, 162–96.Google Scholar
Greinert, J., Bohrmann, G. & Elvert, M. 2002. Stromatolithic fabric of authigenic carbonate crusts: result of anaerobic methane oxidation at cold seeps in 4,850 m water depth. International Journal of Earth Sciences 91, 698711.CrossRefGoogle Scholar
Haas, A., Peckmann, J., Elvert, M., Sahling, H. & Bohrmann, G. 2010. Patterns of carbonate authigenesis at the Kouilou pockmarks on the Congo deep-sea fan. Marine Geology 268, 129–36.Google Scholar
Himmler, T., Brinkmann, F., Bohrmann, G. & Peckmann, J. 2011. Corrosion patterns of seep-carbonates from the eastern Mediterranean Sea. Terra Nova 23, 206–12.Google Scholar
Iadanza, A., Sampalmieri, G., Cipollari, P., Mola, M. & Cosentino, D. 2013. The “Brecciated Limestones” of Maiella, Italy: rheological implications of hydrocarbon-charged fluid migration in the Messinian Mediterranean Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 390, 130–47.CrossRefGoogle Scholar
Kiel, S. 2008. An unusual new gastropod genus from an Eocene hydrocarbon seep in Washington State, USA. Journal of Paleontology 82, 188–91.Google Scholar
Kiel, S. 2010. The fossil record of vent and seep mollusks. In The Vent and Seep Biota: Aspects from Microbes to Ecosystems (ed. Kiel, S.), pp. 255–78. Topics in Geobiology vol. 33. Heidelberg: Springer.CrossRefGoogle Scholar
Kiel, S. 2013. Lucinid bivalves from ancient methane seeps. Journal of Molluscan Studies 79, 346–63.Google Scholar
Kiel, S. & Amano, K. 2013. The earliest bathymodiolin mussels: evaluation of Eocene and Oligocene taxa from deep-sea methane seep deposits in western Washington State, USA. Journal of Paleontology 87, 589602.CrossRefGoogle Scholar
Kiel, S. & Little, C. T. S. 2006. Cold seep mollusks are older than the general marine mollusk fauna. Science 313, 1429–31.Google Scholar
Kiel, S. & Peckmann, J. 2007. Chemosymbiotic bivalves and stable carbon isotopes indicate hydrocarbon seepage at four unusual Cenozoic fossil localities. Lethaia 40, 345–57.Google Scholar
Knittel, K. & Boetius, A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology 63, 311–34.Google Scholar
Krause, S., Aloisi, G., Engel, A., Liebetrau, V. & Treude, T. 2014. Enhanced calcite dissolution in the presence of the aerobic methanotroph Methylosinus trichosporium . Geomicrobiology Journal 31, 325–37.CrossRefGoogle Scholar
Lorion, J., Kiel, S., Faure, B. M., Masaru, K., Ho, S. Y. W., Marshall, B. A., Tsuchida, S., Miyazaki, J.-I. & Fujiwara, Y. 2013. Adaptive radiation of chemosymbiotic deep-sea mussels. Proceedings of the Royal Society B 280, 20131243.Google Scholar
Lucente, C. C. & Taviani, M. 2005. Chemosynthetic communities as fingerprints of submarine sliding-linked hydrocarbon seepage, Miocene deep-sea strata of the Tuscan–Romagna Apennines, Italy. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 176–90.Google Scholar
Luff, R. & Wallmann, K. 2003. Fluid flow, methane fluxes, carbonate precipitation and biogeochemical turnover in gas hydrate-bearing sediments at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances. Geochimica et Cosmochimica Acta 67, 3403–21.Google Scholar
Luo, C. & Reitner, J. 2014. First report of fossil “keratose” demosponges in Phanerozoic carbonates: preservation and 3-D reconstruction. Naturwissenschaften 101, 467–77.Google Scholar
Majima, R., Nobuhara, T. & Kitazaki, T. 2005. Review of fossil chemosynthetic assemblages in Japan. Palaeogeography, Palaeoclimatology, Palaeoecology 227, 86123.CrossRefGoogle Scholar
Marinčić, S., Šparica, M., Tunis, G. & Uchman, A. 1996. The Eocene flysch deposits of the Istrian Peninsula in Croatia and Slovenia: regional, stratigraphic, sedimentological and ichnological analyses. Annales 9, 139–56.Google Scholar
Martire, L., Natalicchio, M., Petrea, C. C., Cavagna, S., Clari, P. & Pierre, F. 2010. Petrographic evidence of the past occurrence of gas hydrates in the Tertiary Piedmont Basin (NW Italy). Geo-Marine Letters 30, 461–76.Google Scholar
Matičec, D. 1994. Neotectonic deformations in Western Istria, Croatia. Geologia Croatica 47, 199204.Google Scholar
Matsumoto, R. 1990. Vuggy carbonate crust formed by hydrocarbon seepage on the continental shelf of Baffin Island, northeast Canada. Geochemical Journal 24, 143–58.Google Scholar
Moalic, Y., Desbruyères, D., Duarte, C. M., Rozenfeld, A. F., Bachraty, C. & Arnaud-Haond, S. 2012. Biogeography revisited with network theory: retracing the history of hydrothermal vent communities. Systematic Biology 61, 127–37.Google Scholar
Natalicchio, M., Birgel, D., Dela Pierre, F., Martire, L., Clari, P., Spötl, C. & Peckmann, J. 2012. Polyphasic carbonate precipitation in the shallow subsurface: insights from microbially-formed authigenic carbonate beds in upper Miocene sediments of the Tertiary Piedmont Basin (NW Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 329–330, 158–72.Google Scholar
Natalicchio, M., Dela Pierre, F., Clari, P., Birgel, D., Cavagna, S., Martire, L. & Peckmann, J. 2013. Hydrocarbon seepage during the Messinian salinity crisis in the Tertiary Piedmont Basin (NW Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 390, 6880.CrossRefGoogle Scholar
Nauhaus, K., Treude, T., Boetius, A. & Krüger, M. 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME-1 and ANME-2 communities. Environmental Microbiology 7, 98106.CrossRefGoogle Scholar
Niemann, H. & Elvert, M. 2008. Diagnostic lipid biomarker and stable carbon isotope signatures of microbial communities mediating the anaerobic oxidation of methane with sulphate. Organic Geochemistry 38, 1668–77.Google Scholar
Olu-Le Roy, K., Sibuet, M., Fiala-Médoni, A., Gofas, S., Salas, C., Mariotti, A., Foucher, J.-P. & Woodside, J. 2004. Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Research I 51, 1915–36.CrossRefGoogle Scholar
Paull, C. K., Chanton, J. P., Neumann, A. C., Coston, J. A., Martens, C. S. & Showers, W. 1992. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits; examples from the Florida Escarpment. Palaios 7, 361–75.Google Scholar
Paull, C. K., Hecker, B., Commeau, R., Freeman-Lynde, R. P., Neumann, C., Golubic, S., Hook, J. E., Sikes, E. & Curray, J. 1984. Biological communities at the Florida Escarpment resemble hydrothermal vent taxa. Science 226, 965–7.Google Scholar
Paull, C. K., Jull, A. J. T., Toolin, L. J. & Linick, T. 1985. Stable isotope evidence for chemosynthesis in an abyssal seep community. Nature 317, 709–11.Google Scholar
Pavšič, J. & Peckmann, J. 1996. Stratigraphy and sedimentology of the Piran Flysch Area (Slovenia). Annales 9, 123–38.Google Scholar
Peckmann, J., Birgel, D. & Kiel, S. 2009. Molecular fossils reveal fluid composition and flow intensity at a Cretaceous seep. Geology 37, 847–50.CrossRefGoogle Scholar
Peckmann, J., Goedert, J. L., Heinrichs, T., Hoefs, J. & Reitner, J. 2003. The Late Eocene ’Whiskey Creek’ methane-seep deposit (Western Washington State). Facies 48, 223–39.CrossRefGoogle Scholar
Peckmann, J., Senowbari-Daryan, B., Birgel, D. & Goedert, J. L. 2007. The crustacean ichnofossil Palaxius associated with callianassid body fossils in an Eocene methane-seep limestone, Humptulips Formation, Olympic Peninsula, Washington. Lethaia 40, 273–80.Google Scholar
Peckmann, J. & Thiel, V. 2004. Carbon cycling at ancient methane-seeps. Chemical Geology 205, 443–67.CrossRefGoogle Scholar
Peckmann, J., Thiel, V., Michaelis, W., Clari, P., Gaillard, C., Martire, L. & Reitner, J. 1999. Cold seep deposits of Beauvoisin (Oxfordian; southeastern France) and Marmorito (Miocene; northern Italy): microbially induced authigenic carbonates. International Journal of Earth Sciences 88, 6075.Google Scholar
Peckmann, J., Thiel, V., Reitner, J., Taviani, M., Aharon, P. & Michaelis, W. 2004. A microbial mat of a large sulfur bacterium preserved in a Miocene methane-seep limestone. Geomicrobiology Journal 21, 247–55.Google Scholar
Reitner, J., Gautret, P., Marin, F. & Neuweiler, F. 1995. Automicrites in modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bulletin de l’Institut Océanographique (Monaco) Numéro Spécial 14, 237–64.Google Scholar
Reitner, J., Thiel, V., Zankl, H., Michaelis, W., Wöhrheide, G. & Gautret, P. 2000. Organic and biogeochemical patterns in cryptic microbialites. In Microbial Sediments (eds Riding, R. E. & Awramik, S. M.), pp.149–60. Berlin, Heidelberg: Springer Verlag.Google Scholar
Ricci Lucchi, F. & Vai, G. B. 1994. A stratigraphic and tectonofacies framework of the “calcari a Lucina” in the Apennine Chain, Italy. Geo-Marine Letters 14, 210–8.Google Scholar
Rigby, J. K. & Goedert, J. L. 1996. Fossil sponges from a localized cold-seep limestone in Oligocene rocks of the Olympic Peninsula, Washington. Journal of Paleontology 70, 900–8.Google Scholar
Ritger, S., Carson, B. & Suess, E. 1997. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. Geological Society of America Bulletin 98, 147–56.Google Scholar
Ritt, B., Sarrazin, J., Caprais, J.-C., Noël, P., Gauthier, O., Pierre, C., Henry, P. & Desbruyères, D. 2010. First insights into the structure and environmental setting of cold-seep communities in the Marmara Sea. Deep-Sea Research I 57, 1120–36.Google Scholar
Rodrigues, C. F., Duperron, S. & Gaudron, S. M. 2011. First documented record of a living solemyid bivalve in a pockmark of the Nile Deep-sea Fan (eastern Mediterranean Sea). Marine Biodiversity Records 4, e10.Google Scholar
Rossell, P. E., Elvert, M., Ramette, A., Boetius, A. & Hinrichs, K.-U. 2011. Factors controlling the distribution of anaerobic methanotrophic communities in marine environments: evidence from intact polar membrane lipids. Geochimica et Cosmochimica Acta 75, 164–84.CrossRefGoogle Scholar
Roterman, C. N., Copley, J. T., Linse, K., Tyler, P. A. & Rogers, A. D. 2013. The biogeography of the yeti crabs (Kiwaidae) with notes on the phylogeny of the Chirostyloidea (Decapoda: Anomura). Proceedings of the Royal Society B 280, 20130718.Google Scholar
Sahling, H., Rickert, D., Lee, R. W., Linke, P. & Suess, E. 2002. Macrofaunal community structure and sulfide flux at gas hydrate deposits from Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series 231, 121–38.Google Scholar
Sandy, M. R., Lazăr, I., Peckmann, J., Birgel, D., Stoica, M. & Roban, R. D. 2012. Methane-seep brachiopod fauna within turbidites of the Sinaia Formation, Eastern Carpathian Mountains, Romania. Palaeogeography, Palaeoclimatology, Palaeoecology 323–325, 4259.Google Scholar
Saul, L. R., Squires, R. L. & Goedert, J. L. 1996. A new genus of cryptic lucinid? bivalve from Eocene cold seeps and turbidite-influenced mudstone, western Washington. Journal of Paleontology 70, 788–94.Google Scholar
Sibuet, M. & Olu, K. 1998. Biogeography, biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins. Deep-Sea Research II 45, 517–67.CrossRefGoogle Scholar
Squires, R. L. & Goedert, J. L. 1991. New Late Eocene mollusks from localized limestone deposits formed by subduction-related methane seeps, southwestern Washington. Journal of Paleontology 65, 412–6.Google Scholar
Stiller, J., Rousset, V., Pleijel, F., Chevaldonne, P., Vrijenhoek, R. C. & Rouse, G. W. 2013. Phylogeny, biogeography and systematics of hydrothermal vent and methane seep Amphisamytha (Ampharetidae, Annelida), with descriptions of three new species. Systematics and Biodiversity 11, 3565.Google Scholar
Taviani, M. 1994. The “calcari a Lucina ” macrofauna reconsidered: deep-sea faunal oases from Miocene-age cold vents in the Romagna Apennine, Italy. Geo-Marine Letters 14, 185–91.Google Scholar
Taviani, M. 2001. Fluid venting and associated processes. In Anatomy of an Orogen: The Apennines and Adjacent Mediterranean Basins (eds Vai, G. B. & Martini, P. I.), pp. 351–66. Dordrecht: Kluwer Academic Publishers.Google Scholar
Taviani, M. 2011. The deep-sea chemoautotroph microbial world as experienced by the Mediterranean metazoans through time. In Advances in Stromatolite Geobiology (eds Reitner, J., Quéric, N.-V. & Arp, G.), pp. 277–95. Lecture Notes in Earth Sciences 131. Berlin: Springer.Google Scholar
Taviani, M. 2014. Marine chemosynthesis in the Mediterranean Sea. In The Mediterranean Sea: Its History and Present Challenges (eds Goffredo, S. & Dubinsky, Z.), pp. 6983. Dordrecht: Springer.Google Scholar
Taviani, M., Angeletti, L. & Ceregato, A. 2011. Chemosynthetic bivalves of the family Solemyidae (Bivalvia, Protobranchia) in the Neogene of the Mediterranean Basin. Journal of Paleontology 85, 1067–76.Google Scholar
Taviani, M., Angeletti, L., Ceregato, A., Foglini, F., Froglia, C. & Trincardi, F. 2013. The Gela Basin pockmark field in the strait of Sicily (Mediterranean Sea): chemosymbiotic faunal and carbonate signatures of postglacial to modern cold seepage. Biogeosciences 10, 4653–71.Google Scholar
Teichert, B. M. A. & van de Schootbrugge, B. 2013. Tracing Phanerozoic hydrocarbon seepage from local basins to the global Earth system. Palaeogeography, Palaeoclimatology, Palaeoecology 390, 13.Google Scholar
Thiel, V., Peckmann, J., Schmale, O., Reitner, J. & Michaelis, W. 2001. A new straight-chain hydrocarbon biomarker associated with anaerobic methane cycling. Organic Geochemistry 32, 1019–23.Google Scholar
Treude, T., Knittel, K., Blumenberg, M., Seifert, R. & Boetius, A. 2005. Subsurface microbial methanotrophic mats in the Black Sea. Applied and Environmental Microbiology 71, 6375–8.Google Scholar
Tribollet, A., Golubic, S., Radtke, G. & Reitner, J. 2011. On microbiocorrosion. In Advances in Stromatolite Geobiology (eds Reitner, J., Quéric, N.-V. & Arp, G.), pp. 265–76. Lecture Notes in Earth Sciences 131. Berlin: Springer.Google Scholar
Vacelet, J., Fiala-Médioni, A., Fisher, C. R. & Boury-Esnault, N. 1996. Symbiosis between methane oxidizing bacteria and a deep-sea carnivorous cladorhizid sponge. Marine Ecology Progress Series 145, 7785.Google Scholar
Venturini, S., Selmo, E., Tarlao, A. & Tunis, G. 1998. Fossiliferous methanogenic limestones in the Eocene flysch of Istria (Croatia). Giornale di Geologia 60, 219–34.Google Scholar
Vrijenhoek, R. C. 2013. On the instability and evolutionary age of deep-sea chemosynthetic communities. Deep-Sea Research II 92, 189200.CrossRefGoogle Scholar
Živkovic, S. & Babić, L. 2003. Paleoceanographic implications of smaller benthic and planktonic foraminifera from the Eocene Pazin Basin (Coastal Dinarides, Croatia). Facies 49, 4960.Google Scholar