Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T04:31:54.529Z Has data issue: false hasContentIssue false

A revised and improved age model for the middle Miocene part of IODP Site U1318 (Porcupine Basin, offshore southwestern Ireland)

Published online by Cambridge University Press:  30 January 2017

WILLEMIJN QUAIJTAAL*
Affiliation:
Research Unit for Palaeontology, Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
STEVEN TESSEUR
Affiliation:
Research Unit for Palaeontology, Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
TIMME H. DONDERS
Affiliation:
Palaeoecology, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, the Netherlands TNO B&O, Geological Survey of The Netherlands, PO Box 80015, 3508 TA Utrecht, The Netherlands
PHILIPPE CLAEYS
Affiliation:
Earth System Sciences, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
STEPHEN LOUWYE
Affiliation:
Research Unit for Palaeontology, Department of Geology, Ghent University, Krijgslaan 281/S8, 9000 Gent, Belgium
*
Author for correspondence: [email protected]

Abstract

Integrated Ocean Drilling Program Leg 307 Site U1318 is one of the few relatively complete middle Miocene drillcores from the North Atlantic (Porcupine Basin, offshore southwestern Ireland). Using benthic foraminiferal stable carbon and oxygen isotopes, the existing age model for Site U1318 was improved. The stable isotope record displays globally recognized isotope events, used to revise the existing magnetostratigraphy-based age model. Two intervals contained misidentified magnetochrons which were corrected. The sampled interval now has a refined age of 12.75–16.60 Ma with a temporal resolution of c. 29 ka.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abels, H. A., Hilgen, F. J., Krijgsman, W., Kruk, R. W., Raffi, I., Turco, E. & Zachariasse, W. J. 2005. Long-period orbital control on middle Miocene global cooling: Integrated stratigraphy and astronomical tuning of the Blue Clay Formation on Malta. Paleoceanography 20 (4), PA4012.Google Scholar
Boulila, S., Galbrun, B., Miller, K. G., Pekar, S. F., Browning, J. V., Laskar, J. & Wright, J. D. 2011. On the origin of Cenozoic and Mesozoic ‘third-order’ eustatic sequences. Earth-Science Reviews 109 (3–4), 94112.CrossRefGoogle Scholar
De Verteuil, L. & Norris, G. 1996. Miocene dinoflagellate stratigraphy and systematics of Maryland and Virginia. Micropaleontology, supplement 42, 1172.Google Scholar
Dybkjaer, K. & Piasecki, S. 2010. Neogene dinocyst zonation for the eastern North Sea Basin, Denmark. Review of Palaeobotany and Palynology 161 (1–2), 129.Google Scholar
Expedition 307 Scientists 2006. Site U1318. In Proceedings of the Integrated Ocean Drilling Program (eds Ferlman, T. G., Kano, A., Williams, T., Henriet, J.-P. & the Expedition 307 Scientists), pp. 157. Washington, DC: Integrated Ocean Drilling Program Management International.Google Scholar
Flower, B. P. & Kennett, J. P. 1994. The middle Miocene climatic transition: East Antarctic ice sheet development, deep ocean circulation and global carbon cycling. Palaeogeography, Palaeoclimatology, Palaeoecology 108 (3–4), 537–55.Google Scholar
Fontanier, C., Jorissen, F. J., Michel, E., Cortijo, E., Vidal, L. & Anschutz, P. 2008. Stable oxygen and carbon isotopes of live (stained) benthic foraminifera from Cap-Ferret Canyon (Bay of Biscay). The Journal of Foraminiferal Research 38 (1), 3951.CrossRefGoogle Scholar
Hilgen, F.J., Lourens, L.J., Van Dam, J.A., Beu, A.G., Boyes, A.F., Cooper, R.A., Krijgsman, W., Ogg, J.G., Piller, W.E. & Wilson, D.S. 2012. The Neogene Period. In The Geologic Time Scale (eds. Gradstein, F. M., Schmitz, J. G. O. D. & Ogg, G. M.), pp. 923978. Boston: Elsevier.Google Scholar
Holbourn, A., Henderson, A. S. & MacLeod, N. 2013. A to V. In Atlas of Benthic Foraminifera, pp. 15615. Oxford, UK: Wiley-Blackwell.Google Scholar
Holbourn, A., Kuhnt, W., Frank, M. & Haley, B. A. 2013. Changes in Pacific Ocean circulation following the Miocene onset of permanent Antarctic ice cover. Earth and Planetary Science Letters 365, 3850.CrossRefGoogle Scholar
Holbourn, A., Kuhnt, W., Lyle, M., Schneider, L., Romero, O. & Andersen, N. 2014. Middle Miocene climate cooling linked to intensifi cation of eastern equatorial Pacific upwelling. Geology 42 (1), 1922.Google Scholar
Holbourn, A., Kuhnt, W., Schulz, M. & Erlenkeuser, H. 2005. Impacts of orbital forcing and atmospheric carbon dioxide on Miocene ice-sheet expansion. Nature 438 (7067), 483–7.CrossRefGoogle ScholarPubMed
Holbourn, A., Kuhnt, W., Schulz, M., Flores, J. A. & Andersen, N. 2007. Orbitally-paced climate evolution during the middle Miocene ‘Monterey’ carbon-isotope excursion. Earth and Planetary Science Letters 261 (3–4), 534–50.Google Scholar
Jorissen, F. J. 2003. Benthic foraminiferal microhabitats below the sediment-water interface. In Modern Foraminifera (ed. Gupta, B. K. Sen), pp. 161–79. Dordrecht: Springer Netherlands.Google Scholar
Kano, A., Ferdelman, T. G., Williams, T., Henriet, J. P., Ishikawa, T., Kawagoe, N., Takashima, C., Kakizaki, Y., Abe, K., Sakai, S., Browing, E. L., Li, X., Andres, M. S., Bjerager, M., Cragg, B. A., De Mol, B., Dorschel, B., Foubert, A., Frank, T. D., Fuwa, Y., Gaillot, P., Gharib, J. J., Gregg, J. M., Huvenne, V. A. I., Léonide, P., Mangelsdorf, K., Monteys, X., Novosel, I., O'Donnell, R., Rüggeberg, A., Samarkin, V., Sasaki, K., Spivack, A. J., Tanaka, A., Titschack, J., van Rooij, D. & Wheeler, A. 2007. Age constraints on the origin and growth history of a deep-water coral mound in the northeast Atlantic drilled during Integrated Ocean Drilling Program Expedition 307. Geology 35 (11), 1051–4.Google Scholar
Katz, M. E., Katz, D. R., Wright, J. D., Miller, K. G., Pak, D. K., Shackleton, N. J. & Thomas, E. 2003. Early Cenozoic benthic foraminiferal isotopes: Species reliability and interspecies correction factors. Paleoceanography 18 (2), doi:10.1029/2002PA000798.Google Scholar
Louwye, S., Foubert, A., Mertens, K., Van Rooij, D. & The IODP Expedition 307 Scientific Party 2008. Integrated stratigraphy and palaeoecology of the Lower and Middle Miocene of the Porcupine Basin. Geological Magazine 145, 321–44.Google Scholar
McCorkle, D. C., Emerson, S. R. & Quay, P. D. 1985. Stable carbon isotopes in marine porewaters. Earth and Planetary Science Letters 74 (1), 1326.Google Scholar
Miller, K. G., Mountain, G. S., Browning, J. V., Kominz, M., Sugarman, P. J., Christie-Blick, N., Katz, M. E. & Wright, J. D. 1998. Cenozoic global sea level, sequences, and the New Jersey Transect: Results fom coastal plain and continental slope drilling. Reviews of Geophysics 36 (98), 569601.Google Scholar
Miller, K. G., Mountain, , , G. S., the Leg 150 Shipboard Party & Members of the New Jersey Coastal Plain Drilling Project 1996. Drilling and dating New Jersey Oligocene–Miocene sequences: ice volume, global sea level, and Exxon records. Science 271 (5252), 1092–5.Google Scholar
Miller, K. G., Wright, J. D. & Fairbanks, R. G. 1991. Unlocking the ice house: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research 96 (B4), 68296848.Google Scholar
Moran, K., Backman, J., Brinkhuis, H., Clemens, S. C., Cronin, T. M., Dickens, G. R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R. W., Kaminski, M., King, J., Koc, N., Krylov, A., Martinez, N., Matthiessen, J., McInroy, D., Moore, T. C., Onodera, J., O'Regan, M., Pälike, H., Rea, B., Rio, D., Sakamoto, T., Smith, D. C., Stein, R. R., John, K. E. K. St., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P. W., Jokat, W., Kristoffersen, Y., St John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M., Yamamoto, M., Farrell, J., Frank, M., Kubik, P. W., Jokat, W. & Kristoffersen, Y. 2006. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature 441 (7093), 601–5.Google Scholar
Pisias, N. G., Shackleton, N. J. & Hall, M. A. 1985. Stable isotope and calcium carbonate records from hydraulic piston cored hole 574A: High-resolution records from the middle Miocene. In Initial Reports of the Deep Sea Drilling Project Vol. 85 (eds. Mayer, L. & Theyer, F.), pp. 735–48. Washington: US Government Printing Office.Google Scholar
Quaijtaal, W., Donders, T. H., Persico, D. & Louwye, S. 2014. Characterising the middle Miocene Mi-events in the Eastern North Atlantic realm: A first high-resolution marine palynological record from the Porcupine Basin. Palaeogeography, Palaeoclimatology, Palaeoecology 399, 140–59.Google Scholar
Schreck, M., Matthiessen, J. & Head, M.J. 2012. A magnetostratigraphic calibration of Middle Miocene through Pliocene dinoflagellate cyst and acritarch events in the Iceland Sea (Ocean Drilling Program Hole 907A). Review of Palaeobotany and Palynology 187, 6694.Google Scholar
Sexton, P. F. & Wilson, P. A. 2009. Preservation of benthic foraminifera and reliability of deep-sea temperature records: Importance of sedimentation rates, lithology, and the need to examine test wall structure. Paleoceanography 24 (2), PA2208.Google Scholar
Sexton, P. F., Wilson, P. A. & Pearson, P. N. 2006. Microstructural and geochemical perspectives on planktic foraminiferal preservation: ‘Glassy’ versus ‘Frosty’. Geochemistry, Geophysics, Geosystems 7 (12), Q12P19.Google Scholar
Shackleton, N. J. & Hall, M. A. 1984. Oxygen and carbon isotope stratigraphy of Deep Sea Drilling Project Hole 552a: Plio-Pleistocene glacial history. Initial Reports of the Deep Sea Drilling Project 81, 599609.Google Scholar
Shackleton, N. J., Hall, M. A. & Boersma, A. 1984. Oxygen and carbon isotope data from Leg 74 foraminifers. Initial Reports of the Deep Sea Drilling Project 74, 599612.Google Scholar
Shevenell, A. E. & Kennett, J. P. 2004. Paleoceanographic change during the Middle Miocene climate revolution: an Antarctic stable isotope perspective. Geophysical Monograph Series 148, 118.Google Scholar
Snyder, S. W. & Waters, V. J. 1984. Cenozoic planktonic foraminiferal biostratigraphy of the Goban Spur Region, Deep Sea Drilling Project Leg 80. In Initial Reports of the Deep Sea Drilling Project Vol. 80 (eds de Graciansky, P. C. & Poag, C. W.), pp. 439–72. Washington, DC: US Government Printing Office.Google Scholar
Van Rooij, D., De Mol, B., Huvenne, V., Ivanov, M. & Henriet, J. P. 2003. Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Marine Geology 195 (1–4), 3153.Google Scholar
Williams, G. L., Brinkhuis, H., Pearce, M. A., Fensome, R. A. & Weegink, J. W. 2004. Southern Ocean and global dinflagellate cyst events compared: index events for the Late Cretaceous Neogene. In Proceedings of the Ocean Drilling Program, Scientific Results Volume 189 (eds Exon, N. F., Kennett, J. P. & Malone, M. J.), pp. 1–98.Google Scholar
Woodruff, F. & Savin, S. M. 1989. Miocene deepwater oceanography. Paleoceanography 4 (1), 87140.CrossRefGoogle Scholar
Woodruff, F. & Savin, S. M. 1991. Mid-Miocene isotope stratigraphy in the deep sea: High-resolution correlations, paleoclimatic cycles, and sediment preservation. Paleoceanography 6 (6), 755806.CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. 2001. Trends, global rhythms, aberrations in global climate 65Ma to present. Science 292 (5517), 686–93.Google Scholar
Supplementary material: PDF

Quaijtaal supplementary material

Plate 1

Download Quaijtaal supplementary material(PDF)
PDF 4.9 MB
Supplementary material: File

Quaijtaal supplementary material

Table S1

Download Quaijtaal supplementary material(File)
File 38.3 KB