Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T23:17:33.981Z Has data issue: false hasContentIssue false

Provenance and geochemical variations across the Ediacaran–Cambrian transition in the Soltanieh Formation, Alborz Mountains, Iran

Published online by Cambridge University Press:  09 July 2018

NAJMEH ETEMAD-SAEED*
Affiliation:
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137–66731, Iran
MAHDI NAJAFI
Affiliation:
Department of Earth Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137–66731, Iran
*
Author for correspondence: [email protected]

Abstract

The Soltanieh Formation in the Alborz Mountains of northern Iran is not only a key lithostratigraphic unit for reconstruction of the Iranian geological history, but also a globally outstanding succession to reveal variations in seawater composition across the Precambrian–Cambrian (PC–C) transition. Mineralogical and geochemical data from a continuous stratigraphic record of Lower and Upper Shale members of the Soltanieh Formation are used to define their provenance, tectonic setting as well as geochemical variations during the PC–C transition. The Soltanieh mudrocks are composed of quartz and plagioclase, with minor constituents of illite, chlorite and montmorillonite. The chemical index of alteration, A-CN-K (Al2O3 – CaO + Na2O – K2O) relations, index of compositional variability, and Th/Sc versus Zr/Sc ratios indicate low chemical weathering in source areas, compositionally immature and first-cycle sediments. Immobile trace-element ratios and discrimination diagrams, chondrite-normalized rare Earth element (REE) patterns and negative Eu anomaly, along with low total REE abundances and negligible Ce anomalies, demonstrate that the Soltanieh Formation was mainly derived from proximal felsic-intermediate Cadomian magmatic arc sources and deposited in a continental-arc-related basin on the proto-Tethyan active margin of Gondwana. The palaeoredox indicators exhibit a remarkable change in environmental condition from a suboxic to an oxic state across the PC–C transition from the Kahar Formation to the Upper Shale Member of the Soltanieh Formation. Moreover, a significant upwards increase of P, Ba, and Ca is likely associated with enhanced fluxes of nutrient elements during the PC–C transition, coeval with the building of collisional mountain belts during the amalgamation of Gondwana.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbo, A., Avigad, D., Gerdes, A. & Güngör, T. 2015. Cadomian basement and Paleozoic to Triassic siliciclastics of the Taurides (Karacahisar dome, south-central Turkey): paleogeographic constraints from U–Pb–Hf in zircons. Lithos 227, 122–39.Google Scholar
Amedjoe, C. G., Gawu, S. K. Y., Ali, B., Aseidu, D. K. & Nude, P. M. 2018. Geochemical compositions of Neoproterozoic to Lower Palaeozoic (?) shales and siltstones in the Volta Basin (Ghana): constraints on provenance and tectonic setting. Sedimentary Geology 368, 114–31.Google Scholar
Armstrong-Altrin, J. S. 2015. Evaluation of two multidimensional discrimination diagrams from beach and deep-sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks. International Geology Review 57 (11–12), 1446–61.Google Scholar
Armstrong-Altrin, J. S., Lee, Y. Il, Kasper-Zubillaga, J. J. & Trejo-Ramírez, E. 2017. Mineralogy and geochemistry of sands along the Manzanillo and El Carrizal beach areas, southern Mexico: implications for palaeoweathering, provenance and tectonic setting. Geological Journal 52 (4), 559–82.Google Scholar
Armstrong-Altrin, J. S. & Machain-Castillo, M. L. 2016. Mineralogy, geochemistry, and radiocarbon ages of deep sea sediments from the Gulf of Mexico, Mexico. Journal of South American Earth Sciences 71, 182200.Google Scholar
Avigad, D., Abbo, A. & Gerdes, A. 2016. Origin of the Eastern Mediterranean: Neotethys rifting along a cryptic Cadomian suture with Afro-Arabia. Geological Society of America Bulletin 128 (7–8), 1286–96.Google Scholar
Ballato, P., Uba, C. E., Landgraf, A., Strecker, M. R., Sudo, M., Stockli, D. F., Friedrich, A. & Tabatabaei, S. H. 2011. Arabia-Eurasia continental collision: Insights from late Tertiary foreland-basin evolution in the Alborz Mountains, northern Iran. Geological Society of America Bulletin 123 (1–2), 106–31.Google Scholar
Banerjee, D. M., Schidlowski, M., Siebert, F. & Brasier, M. D. 1997. Geochemical changes across the Proterozoic–Cambrian transition in the Durmala phosphorite mine section, Mussoorie Hills, Garhwal Himalaya, India. Palaeogeography, Palaeoclimatology, Palaeoecology 132 (1), 183–94.Google Scholar
Berberian, M. & King, G. C. P. 1981. Towards a paleogeography and tectonic evolution of Iran: Reply. Canadian Journal of Earth Sciences 18 (11), 1764–6.Google Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92 (2), 181–93.Google Scholar
Boggs, S. 2009. Petrology of Sedimentary Rocks. Cambridge: Cambridge University Press.Google Scholar
Boyle, R. A., Dahl, T. W., Bjerrum, C. J. & Canfield, D. E. 2018. Bioturbation and directionality in Earth's carbon isotope record across the Neoproterozoic–Cambrian transition. Geobiology 16 (3), 252–78.Google Scholar
Brasier, M. D., Magaritz, M., Corfield, R., Huilin, L., Xiche, W., Lin, O., Zhiwen, J., Hamdi, B., Tinggui, H. & Fraser, A. G. 1990. The carbon- and oxygen-isotope record of the Precambrian–Cambrian boundary interval in China and Iran and their correlation. Geological Magazine 127 (4), 319–32.Google Scholar
Brindley, G. W. 1980. Quantitative X-ray mineral analysis of clays. Crystal Structures of Clay Minerals and their X-ray Identification 5, 411–38.Google Scholar
Cartier, E. 1972. Geological map of the central Alborz: Sheet Damavand. Tehran: Geological Survey of Iran. Scale 1:100,000.Google Scholar
Cawood, P. A., Johnson, M. R. W. & Nemchin, A. A. 2007. Early Palaeozoic orogenesis along the Indian margin of Gondwana: tectonic response to Gondwana assembly. Earth and Planetary Science Letters 255 (1), 7084.Google Scholar
Chang, C., Hu, W., Fu, Q., Cao, J., Wang, X. & Yao, S. 2016. Characterization of trace elements and carbon isotopes across the Ediacaran-Cambrian boundary in Anhui Province, South China: Implications for stratigraphy and paleoenvironment reconstruction. Journal of Asian Earth Sciences 125, 5870.Google Scholar
Chumakov, N. M. 2010. Precambrian glaciations and associated biospheric events. Stratigraphy and Geological Correlation 18 (5), 467–79.Google Scholar
Ciabeghodsi, A. 2007. Biostratigraphy, Chemostratigraphy and Sedimentary Environment of Neoproterozoic–Cambrian strata of Alborz Mountains. Ph.D. thesis, Shahid-Beheshti University, Tehran, Iran. Published thesis [in Persian].Google Scholar
Ciabeghodsi, A., Hamdi, B., Adabi, M. H. & Sadeghi, A. 2005. Ichnology and new ichnospecies from Soltanieh Type Section (NE of Zanjan) NW of Iran. In Proceedings of 39th Annual Meeting of GSA North-Central Section, Minneapolis, Minnesota, 19–20 May 2005.Google Scholar
Ciabeghodsi, A., Hamdi, B., Adabi, M. H. & Sadeghi, A. 2006. Systematic and taphonomic study of Trichophycus pedum at the Soltanieh Type Section in SE of Zanjan. Earth Science Journal, Geological Survey of Iran 61, 116123 [in Persian].Google Scholar
Condie, K. C. 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104 (1–4), 137.Google Scholar
Condie, K. C. & Wronkiewicz, D. J. 1990. The Cr/Th ratio in Precambrian pelites from the Kaapvaal Craton as an index of craton evolution. Earth and Planetary Science Letters 97 (3–4), 256–67.Google Scholar
Cox, R., Lowe, D. R. & Cullers, R. L. 1995. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochimica et Cosmochimica Acta 59 (14), 2919–40.Google Scholar
Cullers, R. L. 1994. The chemical signature of source rocks in size fractions of Holocene stream sediment derived from metamorphic rocks in the wet mountains region, Colorado, USA. Chemical Geology 113 (3–4), 327–43.Google Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51 (3), 181203.Google Scholar
Cullers, R. L. & Podkovyrov, V. N. 2002. The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. Precambrian Research 117 (3), 157–83.Google Scholar
Erwin, D. H. 2015. Was the Ediacaran-Cambrian radiation a unique evolutionary event? Paleobiology 41 (1), 115.Google Scholar
Etemad-Saeed, N. 2014. Provenance, Diagenesis and Sedimentary Environment of the Kahar Formation in the Sarbandan Section, Central Alborz Mountains. Ph.D. thesis, Shahid Beheshty University, Tehran, Iran. Published thesis.Google Scholar
Etemad-Saeed, N., Hosseini-Barzi, M., Adabi, M. H., Miller, N. R., Sadeghi, A., Houshmandzadeh, A. & Stockli, D. F. 2016. Evidence for ca. 560Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran. Gondwana Research 31, 164–83.Google Scholar
Etemad-Saeed, N., Hosseini-Barzi, M., Adabi, M. H., Sadeghi, A. & Houshmandzadeh, A. 2015. Provenance of Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. Journal of African Earth Sciences 111, 5475.Google Scholar
Falcon, N. L. 1974. Southern Iran: Zagros Mountains. In: Mesozoic–Cenozoic Orogoenic Belts: Data for Orogenic Studies (ed. Spencer, A. M.), pp. 199211. Geological Society of London, Special Publication no. 4.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10), 921–4.Google Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society 144 (4), 531–42.Google Scholar
Floyd, P. A., Winchester, J. A. & Park, R. G. 1989. Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland. Precambrian Research 45 (1–3), 203–14.Google Scholar
Fritz, H., Abdelsalam, M., Ali, K. A., Bingen, B., Collins, A. S., Fowler, A. R., Ghebreab, W., Hauzenberger, C. A., Johnson, P. R., Kusky, T. M., Macey, P., Muhonga, S., Stern, R. J. & Viola, G. 2013. Orogen styles in the East African Orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. Journal of African Earth Sciences 86, 65106.Google Scholar
Ghorbani, M. 2013. A summary of geology of Iran. In The Economic Geology of Iran: Mineral Deposits and Natural Resouces (ed. Ghorbani, M.), pp. 4564. Dordrecht: Springer.Google Scholar
Guo, D., Shibuya, R., Akiba, C., Saji, S., Kondo, T. & Nakamura, J. 2016. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351 (6271), 361–5.Google Scholar
Hamdi, B., Brasier, M. D. & Zhiwen, J. 1989. Earliest skeletal fossils from Precambrian–Cambrian boundary strata, Elburz Mountains, Iran. Geological Magazine 126 (3), 283–9.Google Scholar
Hardy, R. & Tucker, M. E. 1988. X-ray powder diffraction of sediments. In: Techniques in Sedimentology (ed. Tucker, M. E.), pp. 191228. London: Blackwell Scientific Publications.Google Scholar
Hassanzadeh, J., Stockli, D. F., Horton, B. K., Axen, G. J., Stockli, L. D., Grove, M., Schmitt, A. K. & Walker, J. D. 2008. U-Pb zircon geochronology of late Neoproterozoic-Early Cambrian granitoids in Iran: Implications for paleogeography, magmatism, and exhumation history of Iranian basement. Tectonophysics 451 (1–4), 7196.Google Scholar
Honarmand, M., Li, X.-H., Nabatian, G., Rezaeian, M. & Etemad-Saeed, N. 2016. Neoproterozoic–Early Cambrian tectono-magmatic evolution of the Central Iranian terrane, northern margin of Gondwana: Constraints from detrital zircon U–Pb and Hf–O isotope studies. Gondwana Research 37, 285300.Google Scholar
Horton, B. K., Hassanzadeh, J., Stockli, D. F., Axen, G. J., Gillis, R. J., Guest, B., Amini, A., Fakhari, M. D., Zamanzadeh, S. M. & Grove, M. 2008. Detrital zircon provenance of Neoproterozoic to Cenozoic deposits in Iran: Implications for chronostratigraphy and collisional tectonics. Tectonophysics 451 (1–4), 97122.Google Scholar
Hu, J., Wang, H. & Wang, M. 2017. Provenance and tectonic setting of siliciclastic rocks associated with the Neoproterozoic Dahongliutan BIF: implications for the Precambrian crustal evolution of the Western Kunlun orogenic belt, NW China. Journal of Asian Earth Sciences 147, 95115.Google Scholar
Husseini, M. I. 1989. Tectonic and deposition model of late Precambrian-Cambrian Arabian and adjoining plates. AAPG Bulletin 73 (9), 1117–31.Google Scholar
Jafari, S. M., Shemirani, A. & Hamdi, B. 2007. Microstratigraphy of the Late Ediacaran to the Ordovician in NW Iran (Takab area). In: The Rise and Fall of the Ediacaran Biota (eds Vickers-Rich, P. & Komarower, P.), pp. 433–7. Geological Society, London, Special Publication no. 286.Google Scholar
Kimura, H., Matsumoto, R., Kakuwa, Y., Hamdi, B. & Zibaseresht, H. 1997. The Vendian-Cambrian δ13C record, North Iran: evidence for overturning of the ocean before the Cambrian Explosion. Earth and Planetary Science Letters 147 (1–4), E1–7.Google Scholar
Kimura, H. & Watanabe, Y. 2001. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology 29 (11), 995–8.Google Scholar
Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T., Shu, D., Li, Y. & Han, J. 2008. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Research 14 (1–2), 159–74.Google Scholar
Ling, H.-F., Chen, X., Li, D., Wang, D., Shields-Zhou, G. A. & Zhu, M. 2013. Cerium anomaly variations in Ediacaran–earliest Cambrian carbonates from the Yangtze Gorges area, South China: implications for oxygenation of coeval shallow seawater. Precambrian Research 225, 110–27.Google Scholar
Madanipour, S., Ehlers, T. A., Yassaghi, A. & Enkelmann, E. 2017. Accelerated middle Miocene exhumation of the Talesh Mountains constrained by U-Th/He thermochronometry: evidence for the Arabia-Eurasia collision in the NW Iranian Plateau. Tectonics, published online 13 July 2017, doi: 10.1002/2016TC004291.Google Scholar
Malek-Mahmoudi, F., Davoudian, A. R., Shabanian, N., Azizi, H., Asahara, Y., Neubauer, F. & Dong, Y. 2017. Geochemistry of metabasites from the North Shahrekord metamorphic complex, Sanandaj-Sirjan Zone: Geodynamic implications for the Pan-African basement in Iran. Precambrian Research 293, 5672.Google Scholar
Mángano, M. G. & Buatois, L. A. 2016. The Cambrian explosion. In The Trace-Fossil Record of Major Evolutionary Events, pp. 73126. Dordrecht: Springer.Google Scholar
Maruyama, S., Ikoma, M., Genda, H., Hirose, K., Yokoyama, T. & Santosh, M. 2013. The naked planet Earth: most essential pre-requisite for the origin and evolution of life. Geoscience Frontiers 4 (2), 141–65.Google Scholar
Maruyama, S. & Liou, J. G. 2005. From snowball to Phaneorozic Earth. International Geology Review 47 (8), 775–91.Google Scholar
McLennan, S. M. 1993. Weathering and global denudation. The Journal of Geology 101 (2), 295303.Google Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Geological Society of America Special Papers 284, 2140.Google Scholar
McLennan, S. M. & Taylor, S. R. 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology 99 (1), 121.Google Scholar
McLennan, S. M., Taylor, S. R., McCulloch, M. T. & Maynard, J. B. 1990. Geochemical and Nd Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochimica et Cosmochimica Acta 54 (7), 2015–50.Google Scholar
Moghadam, H. S., Khademi, M., Hu, Z., Stern, R. J., Santos, J. F. & Wu, Y. 2015. Cadomian (Ediacaran–Cambrian) arc magmatism in the ChahJam–Biarjmand metamorphic complex (Iran): magmatism along the northern active margin of Gondwana. Gondwana Research 27 (1), 439–52.Google Scholar
Moghadam, H. S., Li, X.-H., Griffin, W. L., Stern, R. J., Thomsen, T. B., Meinhold, G., Aharipour, R. & O'Reilly, S. Y. 2017. Early Paleozoic tectonic reconstruction of Iran: tales from detrital zircon geochronology. Lithos 268, 87101.Google Scholar
Moghadam, H. S., Li, X.-H., Stern, R. J., Ghorbani, G. & Bakhshizad, F. 2016. Zircon U–Pb ages and Hf–O isotopic composition of migmatites from the Zanjan–Takab complex, NW Iran: constraints on partial melting of metasediments. Lithos 240, 3448.Google Scholar
Murray, R. W., Ten Brink, M. R. B., Jones, D. L., Gerlach, D. C. & Russ, G. P. 1990. Rare earth elements as indicators of different marine depositional environments in chert and shale. Geology 18 (3), 268–71.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885), 715–7.Google Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48 (7), 1523–34.Google Scholar
Nesbitt, H. W., Young, G. M., McLennan, S. M. & Keays, R. R. 1996. Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. Journal of Geology 104 (5), 525–42.Google Scholar
Och, L. M. 2011. Biogeochemical Cycling through the Neoproterozoic-Cambrian Transition in China: An Integrated Study of Redox-Sensitive Elements. London: University College London.Google Scholar
Pereira, M. F., Chichorro, M., Linnemann, U., Eguiluz, L. & Silva, J. B. 2006. Inherited arc signature in Ediacaran and Early Cambrian basins of the Ossa-Morena zone (Iberian Massif, Portugal): paleogeographic link with European and North African Cadomian correlatives. Precambrian Research 144 (3), 297315.Google Scholar
Pettijohn, F. J., Potter, P. E. & Siever, R. 2012. Sand and Sandstone. New York: Springer Science & Business Media.Google Scholar
Potter, P. E. 1978. Petrology and chemistry of modern big river sands. Journal of Geology 86 (4), 423–49.Google Scholar
Ramezani, J. & Tucker, R. D. 2003. The Saghand region, central Iran: U–Pb geochronology, petrogenesis and implications for Gondwana tectonics. American Journal of Science 303 (7), 622–65.Google Scholar
Roser, B. P., Cooper, R. A., Nathan, S. & Tulloch, A. J. 1996. Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics 39 (1), 116.Google Scholar
Rossetti, F., Nozaem, R., Lucci, F., Vignaroli, G., Gerdes, A., Nasrabadi, M. & Theye, T. 2015. Tectonic setting and geochronology of the Cadomian (Ediacaran-Cambrian) magmatism in central Iran, Kuh-e-Sarhangi region (NW Lut Block). Journal of Asian Earth Sciences 102, 2444.Google Scholar
Sabouri, J., Gharib, F., Jahani, D., Mahmoudi, M. & Soleymani, S. 2013. A review of the oldest fossil evidence in Iran. In The Specialized Seminar on Precambrian of Iran. Ferdowsi University of Mashhad, Abstracts 1–17 (in Persian).Google Scholar
Samani, B. A. 1988. Metallogeny of the Precambrian in Iran. Precambrian Research 39 (1), 85106.Google Scholar
Santosh, M., Maruyama, S., Sawaki, Y. & Meert, J. G. 2014. The Cambrian Explosion: Plume-driven birth of the second ecosystem on Earth. Gondwana Research 25 (3), 945–65.Google Scholar
Shahkarami, S., Mángano, M. G. & Buatois, L. A. 2017. Ichnostratigraphy of the Ediacaran-Cambrian boundary: new insights on lower Cambrian biozonations from the Soltanieh Formation of northern Iran. Journal of Paleontology 91 (6), 1178–98.Google Scholar
Squire, R. J., Campbell, I. H., Allen, C. M. & Wilson, C. J. L. 2006. Did the Transgondwanan Supermountain trigger the explosive radiation of animals on Earth? Earth and Planetary Science Letters 250 (1), 116–33.Google Scholar
Stern, R. J. 1994. Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Sciences 22 (1), 319–51.Google Scholar
Stocklin, J. 1968a. Structural history and tectonic of Iran. AAPG Bulletin 52, 1229–58.Google Scholar
Stocklin, J. 1968b. Structural history and tectonics of Iran: a review. AAPG Bulletin 52 (7), 1229–58.Google Scholar
Talbot, C. J. & Alavi, M. 1996. The past of a future syntaxis across the Zagros. In: Salt Tectonics (eds Alsop, G. I., Blundell, D. J. & Davison, I.), pp. 89109. Geological Society of London, Special Publication no. 100.Google Scholar
Tawfik, H. A., Ghandour, I. M., Maejima, W., Armstrong-Altrin, J. S. & Abdel-Hameed, A.-M. T. 2017. Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering. Geological Magazine 154 (1), 123.Google Scholar
Taylor, S. R. & McLennan, S. M. 1985. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publications.Google Scholar
Tucker, M. E. 2009. Sedimentary Petrology: An Introduction to the Origin of Sedimentary Rocks. Chichester: John Wiley & Sons.Google Scholar
Ugidos, J. M., Barba, P., Valladares, M. I., Suárez, M. & Ellam, R. M. 2016. The Ediacaran–Cambrian transition in the Cantabrian Zone (northern Spain): sub-Cambrian weathering, K-metasomatism and provenance of detrital series. Journal of the Geological Society 173 (4), 603–15.Google Scholar
Ustaömer, P. A., Ustaömer, T., Gerdes, A., Robertson, A. H. F. & Collins, A. S. 2012. Evidence of Precambrian sedimentation/magmatism and Cambrian metamorphism in the Bitlis Massif, SE Turkey utilising whole-rock geochemistry and U–Pb LA-ICP-MS zircon dating. Gondwana Research 21 (4), 1001–18.Google Scholar
Verma, S. P. & Armstrong-Altrin, J. S. 2016. Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sedimentary Geology 332, 112.Google Scholar
Wang, S., Zou, C., Dong, D., Wang, Y., Li, X., Huang, J. & Guan, Q. 2015. Multiple controls on the paleoenvironment of the Early Cambrian marine black shales in the Sichuan Basin, SW China: Geochemical and organic carbon isotopic evidence. Marine and Petroleum Geology 66, 660–72.Google Scholar
Wang, W., Zeng, M.-F., Zhou, M.-F., Zhao, J.-H., Zheng, J.-P. & Lan, Z.-F. 2017. Age, provenance and tectonic setting of Neoproterozoic to early Paleozoic sequences in southeastern South China Block: constraints on its linkage to western Australia-East Antarctica. Precambrian Research 309, 290308.Google Scholar
Weaver, C. E. 1989. Clays, Muds, and Shales. Amsterdam: Elsevier.Google Scholar
Wei, G.-Y., Ling, H.-F., Li, D., Wei, W., Wang, D., Chen, X., Zhu, X.-K., Zhang, F.-F. & Yan, B. 2017. Marine redox evolution in the early Cambrian Yangtze shelf margin area: evidence from trace elements, nitrogen and sulphur isotopes. Geological Magazine 154 (6), 1344–59.Google Scholar
Xu, J. & Li, Y.-L. 2015. An SEM study of microfossils in the black shale of the Lower Cambrian Niutitang Formation, Southwest China: implications for the polymetallic sulfide mineralization. Ore Geology Reviews 65, 811–20.Google Scholar
Zanchi, A., Berra, F., Mattei, M., Ghassemi, M. R. & Sabouri, J. 2006. Inversion tectonics in central Alborz, Iran. Journal of Structural Geology 28 (11), 2023–37.Google Scholar
Zhai, L., Wu, C., Ye, Y., Zhang, S. & Wang, Y. 2018. Fluctuations in chemical weathering on the Yangtze Block during the Ediacaran–Cambrian transition: implications for paleoclimatic conditions and the marine carbon cycle. Palaeogeography, Palaeoclimatology, Palaeoecology 490, 280–92.Google Scholar
Zhang, X., Shu, D., Han, J., Zhang, Z., Liu, J. & Fu, D. 2014. Triggers for the Cambrian explosion: hypotheses and problems. Gondwana Research 25 (3), 896909.Google Scholar
Zhou, L., Friis, H., Yang, T. & Nielsen, A. T. 2017. Geochemical interpretation of the Precambrian basement and overlying Cambrian sandstone on Bornholm, Denmark: Implications for the weathering history. Lithos 286, 369–87.Google Scholar
Zhu, M. & Li, X.-H. 2017. Introduction: from snowball Earth to the Cambrian explosion–evidence from China. Geological Magazine 154 (6), 1187–92.Google Scholar
Zlatkin, O., Avigad, D. & Gerdes, A. 2013. Evolution and provenance of Neoproterozoic basement and Lower Paleozoic siliciclastic cover of the Menderes Massif (western Taurides): coupled U–Pb–Hf zircon isotope geochemistry. Gondwana Research 23 (2), 682700.Google Scholar