Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T02:17:30.412Z Has data issue: false hasContentIssue false

Proterozoic Mn-oxide precipitation by planktonic plant protists (acritarchs)

Published online by Cambridge University Press:  01 May 2009

S. Morad
Affiliation:
Department of Mineralogy and Petrology, Institute of Geology, Uppsala University, Box 555, S-751 22 Uppsala, Sweden
G. Vidal
Affiliation:
Geology Department, Micropalaeontology Laboratory, Kemicentrum, University of Lund, Box 124, S-221 00 Lund, Sweden

Abstract

Microfossils of plant protists called acritarchs occur embedded in, mostly, authigenic chlorite cement in sandstones of the Visingsö Group (Upper Proterozoic; southern Sweden). These microfossils are commonly encrusted by a Mn-oxide layer. Similar Mn-oxide was not observed elsewhere in the sandstones, thus suggesting that certain acritarchs have played a role in the transfer and precipitation of Mn in ancient sedimentary environments. In the light of available information on the role of extant protists in biomineralization, possible mechanisms for the precipitation of Mnoxide in the Visingsö Group are discussed.

Type
Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berner, R. A. 1981. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology 51, 359–65.Google Scholar
Burns, R. G. & Burns, V. M. 1978. Post-depositional metal enrichment processes inside manganese nodules from the north equatorial Pacific. Earth and Planetary Science Letters 39, 341–8.CrossRefGoogle Scholar
Burns, R. G. & Burns, V. M. 1979. Manganese oxides. In Marine Minerals (ed. Burns, R. G.), pp. 146. Mineralogical Society of America, Short Course Notes 6.CrossRefGoogle Scholar
Crerar, D. A. & Barnes, H. L. 1974. Deposition of deepsea manganese nodules Geochimica et Cosmochimica Acta 38, 279300.CrossRefGoogle Scholar
Degens, E. T., Khoo, F. & Michaelis, W. 1977. Uranium anomaly in black sea sediments. Nature 269, 566–9.CrossRefGoogle Scholar
Ehlrich, H. L. 1972. The role of microbes in manganese nodule genesis and degradation. In Ferromanganese Deposits on the Ocean Floor (ed. Horn, D. R.), pp. 6370. Lamont-Doherty Observatory, Columbia University, New York.Google Scholar
Ehlrich, H. L. 1980. Different forms of microbial manganese oxidation and reduction and their environmental significance. In Biochemistry of Ancient and Modern Environments (ed. Trudinger, P. A. & Walters, M. R.), pp. 327–32. Berlin: Springer.Google Scholar
Emerson, S., Kalhorn, S., Jacobs, L., Tebo, B. M., Nealson, K. H. & Rosson, R. A. 1982. Environmental oxidation rates of manganese (II): bacterial catalysis. Geochimica et Cosmochimica Acta 46, 1073–9.CrossRefGoogle Scholar
Ferris, F. G., Fyfe, W. S. & Beveridge, T. J. 1987. Bacteria as nucleation sites for authigenic minerals in metal-contaminated lake sediments. Chemical Geology 63, 225–32.CrossRefGoogle Scholar
Graham, J. W. & Cooper, S. C. 1959. Biological origin of manganese-rich deposits of the sea floor. Nature 183, 1050–1.CrossRefGoogle Scholar
Gregory, E. & Staley, J. T. 1982. Widespread distribution of ability to oxidize manganese among freshwater bacteria. Applied Environmental Microbiology 44, 509–11.CrossRefGoogle ScholarPubMed
Huntsman, S. A. & Sunda, W. G. 1980. The role of trace metals in regulating phytoplankton growth with emphasis on Fe, Mn and Cu. In The Physiological Ecology of Phytoplankton (ed. Morris, I.), pp. 285328. University of California Press, Studies in Ecology Series no. 7.Google Scholar
Lewin, J. C. & Guillard, R. R. L. 1963. Diatoms. Annual Review of Microbiology 17, 373414.CrossRefGoogle ScholarPubMed
Lorch, D. W. 1977. The action of toxic metals on the green alga Microthamnion huetzingianum, Chaetophoraceae. I. Accumulation of manganese, mercury and lead and their life influence on growth and development of the alga. Mitteilungen aus dent Institut für Allgemeine Botanik in Hamburg 15, 514.Google Scholar
Morad, S. 1986. Pyrite-chlorite and pyritebiotite relations in sandstones. Sedimentary Geology 49, 177–92.CrossRefGoogle Scholar
Platt, T., Subba Rao, D. V. & Irwin, B. 1983. Photosynthesis of picoplankton in the oligotrophic ocean. Nature 301, 702–4.CrossRefGoogle Scholar
Richardson, L. L., Aguilar, C. & Nealson, K. H. 1988. Manganese oxidation in pH and O2 microenvironments produced by photosynthesis. Limnology and Oceanography 33, 352–63.CrossRefGoogle Scholar
Rosson, R. A. & Nealson, K. H. 1982. Manganese binding and oxidation of spores of a marine bacillus. Journal of Bacteriology 151, 1027–38.CrossRefGoogle ScholarPubMed
Sauer, K. 1980. A role for manganese in oxygen evolution in photosynthesis. Accounts of Chemical Research 13, 249–56.CrossRefGoogle Scholar
Sunda, W. G. & Huntsman, S. A. 1985. Regulation of cellular manganese and mangenese transport rates in the unicellular alga Chlamydomonas. Limnology and Oceanography 30, 7180.CrossRefGoogle Scholar
Tappan, H. 1980. The Paleobiology of Plant Protists. San Francisco: Freemen. 1028 pp.Google Scholar
Tipping, E., Jones, J. G. & Woof, C. 1985. Lacustrine manganese oxides: Mn oxidation states and relationships to ‘Mn depositing bacteria’. Archiv für Hydrobiologie 105, 1061–75.CrossRefGoogle Scholar
Vidal, G. 1976. Late Precambrian microfossils from the Visingsö Beds in southern Sweden. Fossils and Strata no. 9, 57 pp.CrossRefGoogle Scholar
Vidal, G. & Knoll, A. H. 1983. Proterozoic plankton. Geological Society of America Memoir 161, 265–77.CrossRefGoogle Scholar
Woo, C. C. 1973. Scanning electron micrographs of marine manganese nodules, marine pebble-size nodules, and fresh water manganese nodules. In Papers on the Origin and Distribution of Mangesese Nodules in the Pacific and Prospects for Exploration (ed. Morgenstein, M.), pp. 165–71, Hawaii.Google Scholar