Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T01:12:56.478Z Has data issue: false hasContentIssue false

Petrogenesis of the Early Palaeozoic granitoids from the Yunkai massif, South China block: implications for a tectonic transition from compression to extension during the Caledonian orogenic event

Published online by Cambridge University Press:  02 October 2017

XIAO-FEI QIU*
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China
XIAO-MING ZHAO
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
HONG-MEI YANG
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China
SHAN-SONG LU
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China
TUO JIANG
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China Laboratory of Isotope Geochemistry, Wuhan Center of China Geological Survey, Wuhan 430205, China
NIAN-WEN WU
Affiliation:
Research Center for Petrogenesis and Mineralization of Granitoid Rocks, China Geological Survey, Wuhan 430205, China
*
Author for correspondence: [email protected]

Abstract

A comprehensive geochronological and geochemical study was carried out on the gneissic monzogranites, porphyritic granodiorites and charnockites in the Gaozhou complex of the Yunkai massif in the southern part of the South China block to better understand the Early Palaeozoic tectonic regime of the South China block. Laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) U–Pb dating of zircons indicates an age of 453.2 ± 5.1 Ma to the formation of the gneissic monzogranites, whereas the porphyritic granodiorites and charnockites were generated at 437.0 ± 1.5 Ma and 435.2 ± 2.2 Ma, respectively. The gneissic monzogranites show geochemical features consistent with the high-K, calc-alkaline rock series and are strongly peraluminous. They have SiO2 contents ranging from 67.75 to 69.65 wt. % and relatively low CaO contents (1.66–1.94 wt. %). Their REE patterns are fractionated with enriched LREEs and negative Eu anomalies. The samples also show enrichment in LILEs (e.g. Rb and K) and Pb, and depletion in Sr, Ba and HFSEs (e.g. Nb, Ta, Ti and P). They have εNd(t) values of −8.2 to −7.7. Conversely, the porphyritic granodiorites and charnockites are characterized as medium-K, calc-alkaline rock series and weakly to strongly peraluminous. They exhibit pronounced depletions in HFSEs and positive Pb anomalies. Compared to the earlier gneissic monzogranites, these rocks have relatively lower SiO2 (65.50–69.36 wt. %), but higher CaO contents (3.34–4.05 wt. %), and have slightly lower εNd(t) values (−9.1 to −8.4). Petrography and geochemical compositions of the gneissic monzogranites indicate that they are S-type granite and likely formed by partial melting of Neoproterozoic to Early Palaeozoic immature metagreywackes; whereas The porphyritic granodiorites and charnockites are A-type granite and likely derived from low degrees of partial melting of the dry, granulitic residue depleted by prior extraction of granitic melt. The new data for the Caledonian granitoids in the Yunkai massif suggest that they were formed in a post-collisional tectonic setting. They represent the earliest post-collisional alkaline magmatism reported so far in the Yunkai massif, and thus indicate a tectonic regime switch, from compression to extension, as early as the Late Ordovician to Early Silurian (~450–435 Ma).

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altherr, R., Holl, A., Hegner, E., Langer, C. & Kreuzer, H. 2000. High-potassium, calc-alkaline I-type plutonism in the European Variscides: northern Vosges (France) and northern Schwarzwald (Germany). Lithos 50, 5173.Google Scholar
Anderson, I. C., Frost, C. D. & Frost, B. R. 2003. Petrogenesis of the Red Mountain pluton, Laramie anorthosite complex, Wyoming: implications for the origin of A-type granite. Precambrian Research 124, 243–67.Google Scholar
Barbarin, B. 1988. Field evidence for successive mixing and mingling between the Piolard Diorite and the Saint-Julien-la-Vêtre Monzogranite (Nord-Forez, Massif Central, France). Canadian Journal of Earth Sciences 25, 4959.Google Scholar
Bonin, B. 2007. A-type granites and related rocks: evolution of a concept, problems and prospects. Lithos 97, 129.Google Scholar
Cai, D. W., Tang, Y., Zhang, H., Lv, Z. H. & Liu, Y. L. 2017. Petrogenesis and tectonic setting of the Devonian Xiqin A-type granite in the northeastern Cathaysia Block, SE China. Journal of Asian Earth Sciences 141, 4358.Google Scholar
Cawood, P. A., Wang, Y. J., Xu, Y. J. & Zhao, G. C. 2013. Locating South China in Rodinia and Gondwana: a fragment of Greater India lithosphere? Geology 41, 903–6.Google Scholar
Chappell, B. W. & White, A. J. R. 1992. I- and S-type granites in the Lachlan fold belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 83, 126.Google Scholar
Charvet, J., Shu, L. S., Faure, M., Choulet, F., Wang, B., Lu, H. & Breton, N. L. 2010. Structural development of the Lower Paleozoic belt of South China: genesis of an intracontinental orogen. Journal of Asian Earth Sciences 39, 309–30.Google Scholar
Chen, C. H., Liu, Y. H., Lee, C. Y., Xiang, H. & Zhou, H. W. 2012. Geochronology of granulite, charnockite and gneiss in the poly-metamorphosed Gaozhou Complex (Yunkai massif), South China: emphasis on the in-situ EMP monazite dating. Lithos 144, 109–29.Google Scholar
Chen, J. F. & Jahn, B. M. 1998. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 284, 101–33.Google Scholar
Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. 1982. Nature and origin of A-type granites with particular reference to SE Australia. Contributions to Mineralogy and Petrology 80, 189200.Google Scholar
Creaser, R. A., Price, R. C. & Wormald, R. J. 1991. A-type granites revisited: assessment of a residual-source model. Geology 19, 163–6.Google Scholar
Dall'Agnol, R., Frost, C. D. & Rämö, O. T. 2012. IGCP Project 510 ‘A-type Granites and Related Rocks through Time’: project vita, results, and contribution to granite research. Lithos 151, 116.Google Scholar
Ding, H. P., Zou, H. P., Min, K., Yin, F., Du, X. D., Ma, X. X., Su, Z. X. & Shen, W. J. 2017. Detrital zircon U-Pb geochronology of Sinian-Cambrian strata in the Eastern Guangxi area, China. Journal of Earth Science 28, 295304.Google Scholar
Eby, G. N. 1992. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Geology 20, 641–4.Google Scholar
Faure, M., Shu, L. S., Wang, B., Charvet, J., Choulet, F. & Monie, P. 2010. Intracontinental subduction: a possible mechanism for the Early Palaeozoic Orogen of SE China. Terra Nova 21, 360–8.Google Scholar
Feng, S. J., Zhao, K. D., Ling, H. F., Chen, P. R., Chen, W. F., Sun, T., Jiang, S. Y. & Pu, W. 2014. Geochronology, elemental and Nd–Hf isotopic geochemistry of Devonian A-type granites in central Jiangxi, South China: constraints on petrogenesis and post-collisional extension of the Wuyi–Yunkai orogeny. Lithos 206, 118.Google Scholar
Guo, L. Z., Shi, Y. S., Lu, H. F., Ma, R. S., Dong, H. G. & Yang, S. F. 1989. The pre-Devonian tectonic patterns and evolution of South China. Journal of Asian Earth Sciences 3, 8793.Google Scholar
He, Z. Y. & Xu, X. S. 2012. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: response to the geodynamics of paleo-Pacific plate subduction. Chemical Geology 328, 208–21.Google Scholar
Hsü, K. J., Li, J. L., Chen, H. H., Wang, Q. C., Sun, S. & Sengör, A. M. C. 1990. Tectonics of South China: key to understanding West Pacific geology. Tectonophysics 183, 939.Google Scholar
Huang, X. L., Yu, Y., Li, J., Tong, L. X. & Chen, L. L. 2013. Geochronology and petrogenesis of the early Paleozoic I-type granite in the Taishan area, South China: middle-lower crustal melting during orogenic collapse. Lithos 177, 268–84.Google Scholar
Isseini, M., André-Mayer, A. S., Vanderhaeghe, O., Barbey, P. & Deloule, E. 2012. A-type granites from the Pan-African orogenic belt in south-western Chad constrained using geochemistry, Sr-Nd isotopes and U-Pb geochronology. Lithos 153, 3952.Google Scholar
Jian, P. 1991. U-Pb dating on zircon from migmatites and granites at the southwestern end of Yunkai upwarped district, South China. Guangdong Geology 6, 5867 (in Chinese with English summary).Google Scholar
Jiao, S. J., Li, X. H., Huang, H. Q. & Deng, X. G. 2015. Metasedimentary melting in the formation of charnockite: petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China. Lithos 239, 217–33.Google Scholar
Johansson, Å., Waight, T., Andersen, T. & Simonsen, S. L. 2016. Geochemistry and petrogenesis of Mesoproterozoic A-type granitoids from the Danish island of Bornholm, southern Fennoscandia. Lithos 244, 94108.Google Scholar
Kalsbeek, F., Jepsen, H. F. & Nutman, A. P. 2001. From source migmatites to plutons: tracking the origin of ca. 435 Ma S-type granites in the East Greenland Caledonian orogen. Lithos 57, 121.Google Scholar
Kim, S. W., Oh, C. W., Williams, I. S., Rubatto, D., Ryu, L. C., Rajesh, V. J., Kim, C. B., Guo, J. H. & Zhai, M. G. 2006. Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos 92, 357–77.Google Scholar
Lei, R. X., Wu, C. Z., Chi, G. X., Gu, L. X., Dong, L. H., Qu, X., Jiang, Y. H. & Jiang, S. Y. 2013. The Neoproterozoic Hongliujing A-type granite in Central Tianshan (NW China): LA-ICP-MS zircon U-Pb geochronology, geochemistry, Nd-Hf isotope and tectonic significance. Journal of Asian Earth Sciences 74, 142–54.Google Scholar
Li, S. Z., Li, X. Y., Zhao, S. J., Yang, Z., Liu, X., Guo, L. L., Wang, Y. M., Hao, Y, Zhang, J. & Hu, M. Y. 2016. Global Early Paleozoic orogens (III): intracontinental orogen in South China. Journal of Jilin University (Earth Science Edition) 46, 1005–25 (in Chinese with English summary).Google Scholar
Li, Z. X. 1998. Tectonic history of the major East Asian lithospheric blocks since the mid-Proterozoic: a synthesis. In, Mantle Dynamics and Plate Interactions in East Asia 27 (eds Flower, M. F. J., Chung, S. L., Lo, C. H. & Lee, C. Y.), pp. 221–43. American Geophysical Union (Geodynamic series).Google Scholar
Li, Z. X., Li, X. H., Wartho, J. A., Clark, C., Li, W. X., Zhang, C. L. & Bao, C. 2010. Magmatic and metamorphic events during the early Paleozoic Wuyi-Yunkai orogeny, southeastern South China: new age constraints and pressure-temperature conditions. Geological Society of America Bulletin 122, 772–93.Google Scholar
Li, Z. X. & Powell, C. M. 2001. An outline of the palaegeographic evolution of the Australian region since the beginning of the Neoproterozoic. Earth-Science Reviews 53, 237–77.Google Scholar
Li, Z., Qiu, J. S. & Yang, X. M. 2014. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Science Reviews 128, 232–48.Google Scholar
Li, X. H., Zhao, J. X., McCulloch, M. T., Zhou, G. Q. & Xing, F. M. 1997. Geochemical and Sm-Nd isotopic study of Neoproterozoic ophiolites from southeastern China: petrogenesis and tectonic implications. Precambrian Research 81, 129–44.Google Scholar
Liu, Y. S., Kelemen, P. B., Zong, K. Q. & Gao, S. 2008. Geochemistry and magmatic history of eclogues and ultramafic rocks from the Chinese continental scientific drill hole: subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology 247, 133–53.Google Scholar
Long, W. G., Xu, D. M., Wang, L., Zhou, D., Jin, X. B. & Zhang, K. 2012. Formation age of hypometamorphic rocks in basement of Yunkai area, South China. Geology and Mineral Resources of South China 28, 290–7 (in Chinese with English summary).Google Scholar
Ludwig, K. R. 2001. User's manual for Isoplot/Ex (rev. 2.49): a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, No. 1a—.Google Scholar
McDonough, W. & Sun, S. S. 1995. The composition of the Earth. Chemical Geology 120, 223–53.Google Scholar
Metcalfe, I. 2013. Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences 66, 133.Google Scholar
Patiño Douce, A. E. P. 1997. Generation of metaluminous A-type granites by low-pressure melting of calc-alkaline granitoids. Geology 25, 743–6.Google Scholar
Patiño Douce, A. E. P. & Beard, J. S. 1995. Dehydration-melting of biotite gneiss and quartz amphibolite from 3 to 15 kbar. Journal of Petrology 36, 707–38.Google Scholar
Patiño Douce, A. E. P. & Beard, J. S. 1996. Effects of P, f(O2) and Mg/Fe ratio on dehydration melting of model metagreywackes. Journal of Petrology 37, 9991024.Google Scholar
Patiño Douce, A. E. P. & Harris, N. 1998. Experimental constraints on Himalayan anatexis. Journal of Petrology 39, 689710.Google Scholar
Pearce, J. A., Harris, N. B. W. & Tindle, A. G. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology 25, 956–83.Google Scholar
Peng, S. B., Jin, Z. M., Liu, Y. H., Fu, J. M., He, L. Q., Cai, M. H. & Wang, Y. B. 2006. Petrochemistry, chronology and tectonic setting of strong peraluminous anatectic granitoids in Yunkai Orogenic Belt, Western Guangdong Province, China. Journal of China University of Geosciences 17, 112.Google Scholar
Peng, S. M. & Wu, G. Y. 1996. Tectonic evolutionary history and dynamic features of Yunkai block. Guangdong Geology 11, 2335 (in Chinese with English summary).Google Scholar
Peng, M., Wu, Y. B., Gao, S., Zhang, H. F., Wang, J., Liu, X. C., Gong, H. J., Zhou, L., Hu, Z. C., Liu, Y. S. & Yuan, H. L. 2012. Geochemistry, zircon U-Pb age and Hf isotope compositions of Paleoproterozoic aluminous A-type granites from the Kongling terrain, Yangtze block: constraints on petrogenesis and geologic implications. Gondwana Research 22, 140–51.Google Scholar
Qin, Z. W., Wu, Y. B., Wang, H., Gao, S., Zhu, L. Q., Zhou, L. & Yang, S. H. 2014. Geochronology, geochemistry, and isotope compositions of Piaochi S-type granitic intrusion in the Qinling orogen, central China: petrogenesis and tectonic significance. Lithos 202, 347–62.Google Scholar
Qiu, X. F., Yang, H. M., Lu, S. S., Ling, W. L., Zhang, L. G. & Wang, Z. X. 2015. Geochronology and geochemistry of Grenville-aged (1063 ± 16 Ma) metabasalts in the Shennongjia district, Yangtze block: implications for tectonic evolution of the South China Craton. International Geology Review 57, 7696.Google Scholar
Qiu, X. F., Yang, H. M., Zhao, X. M., Lu, S. S., Wu, N. W., Zhang, L. G. & Zhang, C. H. 2016. Early Triassic gneissoid granites in the Gaozhou area (Yunkai Massif), South China: implications for the amalgamation of the Indochina and South China Blocks. The Journal of Geology, 395409.Google Scholar
Qiu, Y. X., Peng, S. M., Zhang, B. Y., Zhou, Y. Z., Zou, H. P., Deng, T. Y. & Lu, R. X. 1996. Geological features and evolution of the Yunkai metamorphic block. In Proceedings of the 30th International Geological Congress Field Trip T391, pp. 1–60.Google Scholar
Ren, J. S. 1991. On the geotectonics of southern China. Acta Geologica Sinica 4, 111–36.Google Scholar
Rickwood, P. C. 1989. Boundary lines within petrologic diagrams which use oxides of major and minor elements. Lithos 22, 247–63.Google Scholar
Shu, L. S., Wang, B., Cawood, P. A., Santosh, M. & Xu, Z. Q. 2015. Early Paleozoic and Early Mesozoic intraplate tectonic and magmatic events in the Cathaysia Block, South China. Tectonics 34. doi: 10.1002/2015TC003835.Google Scholar
Shu, L. S., Yu, J. H., Jia, D., Wang, B., Shen, W. Z. & Zhang, Q. Y. 2008. Early Paleozoic orogenic belt in the eastern segment of South China. Geological Bulletin of China 27 (10), 1081–93.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society of London Special Publications 42, 313–45.Google Scholar
Sun, Y., Ma, C. Q. & Liu, B. 2017. Record of Late Yanshanian mafic magmatic activity in the Middle-Lower Yangtze River Metallogenic Belt. Earth Science-Journal of China University of Geosciences 42, 891908 (in Chinese with English summary).Google Scholar
Sylvester, P. J. 1998. Post-collisional strongly peraluminous granites. Lithos 45, 2944.Google Scholar
Tan, Q. L., Wang, Y. J., Zhang, Y. Z., Li, S. B., Zhou, Y. Z. & Wang, Y. K. 2017. Taohong diorite from Pingshui region in eastern Jiangnan orogen: evidence for Early Neoproterozoic oceanic crust subduction. Earth Science-Journal of China University of Geosciences 42, 173–90 (in Chinese with English summary).Google Scholar
Thuy, N. T. B., Satir, M., Siebel, W., Vennemann, T. & Long, T. V. 2004. Geochemical and isotopic constraints on the petrogenesis of granitoids from the Dalat zone, southern Vietnam. Journal of Asian Earth Sciences 23, 467–82.Google Scholar
Ting, W. K. 1929. The orogenic movement in China. Geological Society of China 8, 151–70.Google Scholar
Turner, S. P., Foden, J. D. & Morrison, R. S. 1992. Derivation of some A-type magmas by fractionation of basaltic magma: an example from the Padthaway Ridge, South Australia. Lithos 28, 151–79.Google Scholar
Wan, Y. S., Liu, D. Y., Wilde, S. A., Cao, J. J., Chen, B., Dong, C. Y., Song, B. & Du, L. L. 2010. Evolution of the Yunkai Terrane, South China: evidence from SHRIMP zircon U-Pb dating, geochemistry and Nd isotope. Journal of Asian Earth Sciences 37, 140–53.Google Scholar
Wan, Y. S., Liu, D. Y., Xu, M., Zhuang, J., Song, B., Shi, Y. R. & Du, L. L. 2007. SHRIMP U-Pb zircon geochronology and geochemistry of metavolcanic and metasedimentary rocks in Northwestern Fujian, Cathaysia block, China: tectonic implications and the need to redefine lithostratigraphic units. Gondwana Research 12, 166–83.Google Scholar
Wang, L., Long, W. G. & Zhou, D. 2013a. Zircon LA-ICP-MS U-Pb age of Caledonian granites from Precambrian basement in Yunkai area and its geological implications. Geology in China 40, 1016–29 (in Chinese with English summary).Google Scholar
Wang, Y. J., Fan, W. M., Zhang, G. W. & Zhang, Y. H. 2013b. Phanerozoic tectonics of the South China Block: key observations and controversies. Gondwana Research 23, 1273–305.Google Scholar
Wang, Y. J., Fan, W. M., Zhao, G. C., Ji, S. C. & Peng, T. P. 2007. Zircon U-Pb geochronology of gneissic rocks in the Yunkai massif and its implications on the Caledonian event in the South China Block. Gondwana Research 12, 404–16.Google Scholar
Wang, Y. J., Wu, C. M., Zhang, A. M., Fan, W. M., Zhang, Y. H., Zhang, Y. Z., Peng, T. P. & Yin, C. Q. 2012. Kwangsian and Indosinian reworking of the eastern South China Block: constraints on zircon U-Pb geochronology and metamorphism of amphibolites and granulites. Lithos 150, 227–42.Google Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhang, Y. H. & Zhang, Y. Z. 2013c. Origin of paleosubduction-modified mantle for Silurian gabbro in the Cathaysia Block: geochronological and geochemical evidence. Lithos 160, 3754.Google Scholar
Wang, Y. J., Zhang, A. M., Fan, W. M., Zhao, G. C., Zhang, G. W., Zhang, Y. Z., Zhang, F. F. & Li, S. Z. 2011. Kwangsian crustal anatexis within the eastern South China Block: geochemical, zircon U-Pb geochronological and Hf isotopic fingerprints from the gneissoid granites of Wugong and Wuyi-Yunkai Domains. Lithos 127, 239–60.Google Scholar
Whalen, J. B. 1985. Geochemistry of an Island-Arc Plutonic Suite: the Uasilau-Yau Yau Intrusive Complex, New Britain, P.N.G. Journal of Petrology 26, 603–32.Google Scholar
Whalen, J. B., Currie, K. L. & Chappell, B. W. 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology 95, 407–19.Google Scholar
Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards and Geoanalytical Research 19, 123.Google Scholar
Wormald, R. J. & Price, R. C. 1988. Peralkaline granites near Temora, southern New South Wales: tectonic and petrological implications. Australian Journal of Earth Sciences 35, 209–21.Google Scholar
Xia, Y., Xu, X. S., Zou, H. B. & Liu, L. 2014. Early Paleozoic crust–mantle interaction and lithosphere delamination in South China Block: evidence from geochronology, geochemistry, and Sr-Nd-Hf isotopes of granites. Lithos 184–187, 416–35.Google Scholar
Yan, C. L., Shu, L. S., Faure, M., Chen, Y. & Li, C. 2017. Early Paleozoic intracontinental orogeny in the Yunkai domain, South China Block: new insights from field observations, zircon U-Pb geochronological and geochemical investigations. Lithos 268–271, 320–33.Google Scholar
Yao, W. H., Li, Z. X., Li, W. X., Wang, X. C., Yang, J. H. & Li, X. H. 2012. Post-kinematic lithospheric delamination of the Wuyi-Yunkai orogen in South China: evidence from ca. 435 Ma high-Mg basalts. Lithos 154, 115–29.Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Günther, D. & Wu, F. Y. 2004. Accurate U-Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma-mass spectrometry. Geostandards and Geoanalytical Research 28, 353–70.Google Scholar
Zhang, Q., Jiang, Y. H., Wang, G. C., Liu, Z., Ni, C. Y. & Long, Q. 2015. Origin of Silurian gabbros and I-type granites in central Fujian, SE China: implications for the evolution of the early Paleozoic orogen of South China. Lithos 216–217, 285–97.Google Scholar
Zhao, G. C. & Cawood, P. A. 2012. Precambrian geology of China. Precambrian Research 222–223, 1354.Google Scholar
Zhong, Y. F., Wang, L. X., Zhao, J. H., Liu, L., Ma, C. Q., Zheng, J. P., Zhang, Z. J. & Luo, B. J. 2016. Partial melting of an ancient sub-continental lithospheric mantle in the early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China. Lithos 264, 224–38.Google Scholar
Zhong, Z. Q., You, Z. D., Zhou, H. W. & Han, Y. J. 1996. The evolution and basic structural framework of the basement of the Yunkai uplift. Regional Geology of China 56, 3643 (in Chinese with English summary).Google Scholar
Zhou, H. W., You, Z. D., Zhong, Z. Q. & Han, Y. J. 1994. Characteristics of zircons in orbicular gneissic biotite-granite from Yunkai uplifted area. Earth Science – Journal of China University of Geosciences 19, 427–32 (in Chinese with English summary).Google Scholar
Zhou, X. M., Sun, T., Shen, W. Z., Shu, L. S. & Niu, Y. L. 2006. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: a response to tectonic evolution. Episodes 29, 2633.Google Scholar