Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T12:32:43.542Z Has data issue: false hasContentIssue false

Partial melting of oceanic sediments in subduction zones and its contribution to the petrogenesis of peraluminous granites in the Chinese Altai

Published online by Cambridge University Press:  25 January 2018

QUN LUO
Affiliation:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China Unconventional Natural Gas Institute, China University of Petroleum, Beijing 102249, China
CHEN ZHANG
Affiliation:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China College of Geoscience, China University of Petroleum, Beijing 102249, China Basin and Reservoir Research Center, China University of Petroleum, Beijing 102249, China
SHU JIANG*
Affiliation:
Energy & Geoscience Institute, University of Utah, Salt Lake City 84108, UT, USA
LUOFU LIU
Affiliation:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China College of Geoscience, China University of Petroleum, Beijing 102249, China Basin and Reservoir Research Center, China University of Petroleum, Beijing 102249, China
DONGDONG LIU
Affiliation:
Unconventional Natural Gas Institute, China University of Petroleum, Beijing 102249, China
XIANGYE KONG
Affiliation:
State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China Unconventional Natural Gas Institute, China University of Petroleum, Beijing 102249, China
XIAOYU LIU
Affiliation:
College of Geoscience, China University of Petroleum, Beijing 102249, China
XINPENG WANG
Affiliation:
College of Geoscience, China University of Petroleum, Beijing 102249, China
*
Author for correspondence: [email protected]

Abstract

Late Carboniferous magmatism in the Chinese Altai provides an important view of geodynamic processes active during crustal growth in the Central Asian Orogenic Belt (CAOB). In this study, five representative peraluminous granite plutons from the Chinese Altai were selected for systematic geochronological, geochemical and Sr–Nd–Hf isotopic analyses (Table 1). These granites were emplaced between 449 and 327 Ma in an active subduction zone, and have moderate to high SiO2 (66.54–76.13 wt%), moderate Na2O+K2O (6.27–7.66 wt%), and high Al2O3 contents (12.43–16.18 wt%). All granite samples in this study showed significant decoupling of the Nd and Hf isotope systems. Results show negative εNd(t) values (−3.3 to −0.9), and predominantly positive εHf(t) values (+0.24 to +8.01, n=57) except for a few negative εHf(t) values (−7.44 to −0.03, n=9), high Mg# values (28.69–53.33), high Nd/Hf ratios (4.26–43.57), and enrichment of large-ion lithophile elements (LILEs; e.g. Pb, Th, and U), suggesting that the granites were derived from the partial melting of oceanic sediments and the associated mantle wedge, with fractionation of plagioclase, K-feldspar and biotite. In situ zircon Hf isotopic analyses yield negative εHf(t) values from −30.6 to −13.7 for the zircon xenocrysts. The U–Pb ages and Hf isotopic ratios of these zircon xenocrysts were probably inherited from oceanic sediments. Zircon saturation temperatures suggest that these peraluminous granites were emplaced at 537–765°C. We propose that: (1) the Nd isotopic system more faithfully reflects the source of peraluminous magmas in the Chinese Altai than the Hf isotopic system, and (2) the oceanic sediment recycling was an important process during continental growth in the CAOB.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.Google Scholar
Anderson, D. L. 1989. Theory of the Earth. Oxford: Blackwell, 366 pp.Google Scholar
Anderson, D. L. 2001. Topside tectonics. Science 293, 2016–18.Google Scholar
Anderson, D. L. 2006. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416, 722.Google Scholar
Asahara, Y., Tanaka, T., Kamioka, H., Nishimura, A. & Yamazaki, T. 1999. Provenance of the north Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics. Chemical Geology 158, 271–91.Google Scholar
Ayres, M. & Harris, N. 1997. REE fractionation and Nd-isotope disequilibrium during crustal anatexis: constraints from Himalayan leucogranites. Chemical Geology 139, 249–69.Google Scholar
Bayon, G., German, C. R., Boella, R. M., Milton, J. A., Taylor, R. N. & Nesbitt, R. W. 2002. An improved method for extracting marine sediment fractions and its application to Sr and Nd isotopic analysis. Chemical Geology 187, 179–99.Google Scholar
Ben Othman, D. B., White, W. M. & Patchett, J. 1989. The geochemistry of marine sediments, island arc magma genesis, and crust–mantle recycling. Earth and Planetary Science Letters 94, 121.Google Scholar
BGMRX (Bureau of Geology Mineral Resources of Xinjiang Uygur Autonomous Region), 1993. Regional Geology of Xinjiang Uygur Autonomous Region. People's Republic of China, Ministry of Geology and Mineral Resources. Geological Memoirs, Series 1, No. 32. Beijing: Geological Publishing Housepp. 6–206 (in Chinese).Google Scholar
Biske, Y. S. & Seltmann, R. 2010. Paleozoic Tianshan as a transitional region between the Rheic and Urals-Turkestan Oceans. Gondwana Research 17, 602–13.Google Scholar
Brenan, J. M., Shaw, H. F., Ryerson, F. J. & Phinney, D. L. 1995. Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: constraints on the trace element chemistry of mantle and deep crustal fluids. Geochimica et Cosmochimica Acta 59, 3331–50.Google Scholar
Cai, K., Sun, M., Yuan, C., Xiao, W. J., Zhao, G. C., Long, X. P. & Wu, F. Y. 2012. Carboniferous mantle-derived felsic intrusion in the Chinese Altai, NW China: implications for geodynamic change of the accretionary orogenic belt. Gondwana Research 22, 681–98.Google Scholar
Cai, K., Sun, M., Yuan, C., Zhao, G. C., Xiao, W. J., Long, X. P. & Wu, F. Y. 2010. Geochronological and geochemical study of mafic dykes from the northwest Chinese Altai: implications for petrogenesis and tectonic evolution. Gondwana Research 18, 638–52.Google Scholar
Cai, K., Sun, M., Yuan, C., Zhao, G. C., Xiao, W. J., Long, X. P. & Wu, F. Y. 2011a. Geochronology, petrogenesis and tectonic significance of peraluminous granites from the Chinese Altai. NW China. Lithos 127, 261–81.Google Scholar
Cai, K., Sun, M., Yuan, C., Zhao, G., Xiao, W., Long, X. & Wu, F. 2011b. Prolonged magmatism, juvenile nature and tectonic evolution of the Chinese Altai, NW China: evidence from zircon U—Pb and Hf isotopic study of Paleozoic granitoids. Journal of Asian Earth Sciences 42, 949–68.Google Scholar
Chai, F. M., Mao, J. W., Dong, L. H., Yang, F. Q., Liu, F., Geng, X. X. & Zhang, Z. X. 2009. Geochronology of metarhyolites from the Kangbutiebao Formation in the Kelangbasin, Altay Mountains, Xinjiang: implications for the tectonic evolution and metallogeny. Gondwana Research 16, 189200.Google Scholar
Chauvel, C., Marini, J. C., Plank, T. & Ludden, J. N. 2009. Hf–Nd input flux in the Izu-Mariana subduction zone and recycling of subducted material in the mantle. Geochemistry, Geophysics, Geosystems 10, 514–27.Google Scholar
Chen, B. & Jahn, B. M. 2004.Genesis of post-collisional granitoids and basement nature of the Junggar Terrane, NW China: Nd–Sr isotope and trace element evidence. Journal of Asian Earth Sciences 23, 69703.Google Scholar
Conrad, C. P. & Lithgow-Bertelloni, C. 2003. How mantle slabs drive plate tectonics. Science 298, 207–9.Google Scholar
Davies, G. R. & Tommasini, S. 2000. Isotopic disequilibrium during rapid crustal anatexis: implications for petrogenetic studies of magmatic processes. Chemical Geology 162, 169–91.Google Scholar
Dickinson, W. R. & Snyder, W. S. 1979. Geometry of subducted slabs related to San Andreas transform. Journal of Geology 87, 609927.Google Scholar
Farina, F. & Stevens, G. 2011. Source controlled 87Sr/86Sr isotope variability in granitic magmas: the inevitable consequence of mineral-scale isotopic disequilibrium in the protolith. Lithos 122, 189200.Google Scholar
Gasparon, M. & Varne, R. 1998. Crustal assimilation versus subducted sediment input in west Sunda arc volcanics: an evaluation. Mineralogy & Petrology 64, 89117.Google Scholar
GCRSX (Group for Compilation of Regional Stratigraphy of Xinjiang), 1981. Regional Stratigraphic Table of NW China: Xinjiang Uygur Autonomous Region Fascicule. Beijing: Geological Publishing House, pp. 711.Google Scholar
Geng, H. Y., Sun, M., Yuan, C., Xiao, W. J., Xian, W. S., Zhao, G. C., Zhang, L. F., Wong, K. & Wu, F. Y. 2009. Geochemical, Sr–Nd and zircon U–Pb–Hf isotopic studies of Late Carboniferous magmatism in the West Junggar, Xinjiang: implications for ridge subduction? Chemical Geology 266, 364–89.Google Scholar
Goolaerts, A., Mattielli, N., Jong, J. D., Weis, D. & Scoates, J. S. 2004. Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. Chemical Geology 206 (1–2), 19.Google Scholar
Grassi, D. & Schmidt, M. W. 2011. The melting of carbonated pelites from 70 to 700 km depth. Journal of Petrology 52, 765–89.Google Scholar
Hammouda, B. 1994. Random phase approximation for compressible polymer blends. Journal of Non-Crystalline Solids 172–174, 927–31.Google Scholar
Han, B. F., Wang, S. G., Jahn, B. M., Hong, D. W., Kagami, H. & Dun, Y. L. 1997. Depleted-mantle source for the Ulungur River A-type granites from North Xinjiang, China: geochemistry and Nd-Sr isotopic evidence, and implications for Phanerozoic crustal growth. Chemical Geology 138, 135–59.Google Scholar
Handley, H. K., Turner, S., Macpherson, C. G., Gertisser, R. & Davidson, J. P. 2011. Hf-Nd isotope and trace element constraints on subduction inputs at island arcs: limitations of Hf anomalies as sediment input indicators. Earth and Planetary Science Letters 304, 212–23.Google Scholar
He, Z. Y., Sun, L. X., Mao, L. J., Zong, K. Q. & Zhang, Z. M. 2015. Zircon U–Pb and Hf isotopic study of gneiss and granodiorite from the southern Beishan orogenic collage: Mesoproterozoic magmatism and crustal growth. Chinese Science Bulletin 60, 389–99 (in Chinese with English abstract).Google Scholar
Hofmann, A. W. 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–29.Google Scholar
Hogan, J. P. & Sinha, A. K. 1991.The effect of accessory minerals on the redistribution of lead isotopes during crustal anatexis: a model. Geochimica et Cosmochimica Acta 55, 335–48.Google Scholar
Hong, D., Zhang, J., Wang, T., Wang, S. & Xie, X. 2004. Continental crustal growth and the super continental cycle: evidence from the Central Asian Orogenic Belt. Journal ofAsian Earth Sciences 23, 799813.Google Scholar
Hu, A. Q., Jahn, B. M., Zhang, G. X., Chen, Y. B. & Zhang, Q. F. 2000. Crustal evolution and Phanerozoic crustal growth in northern Xinjiang: Nd isotopic evidence. Part I. Isotopic characterization of basement rocks. Tectonophysics 328, 1551.Google Scholar
Iizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC–ICPMS technique. Chemical Geology 220, 121–37.Google Scholar
Jahn, B. M. & Condie, K. C. 1995.Evolution of the Kaapvaal Craton as viewed from geochemical and SmNd isotopic analyses of intracratonic pelites. Geochimica et Cosmochimica Acta 59 (11), 2239–58.Google Scholar
Jahn, B. M., Windley, B. F., Natalin's, B. & Dobretsov, N. 2004. Phanerozoic continental growth in central Asia. Journal of Asian Earth Sciences 23, 599603.Google Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000a. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.Google Scholar
Jahn, B. M., Wu, F. & Chen, B. 2000b. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transaction of Royal Society of Edinburgh Earth Science 91, 181–93.Google Scholar
Jarrard, R. D. 1986. Relations among subduction parameters. Reviews of Geophysics 24, 217–84.Google Scholar
Jiang, Y. D., Sun, M., Zhao, G. C., Yuan, C., Xiao, W. J., Xia, X. P., Long, X. P. & Wu, F. Y. 2011. Precambrian detrital zircons in the Early Paleozoic Chinese Altai: their provenance and implications for the crustal growth of central Asia. Precambrian Research 189, 140–54.Google Scholar
Jiang, Y. D., Sun, M., Zhao, G. C., Yuan, C., Xiao, W. J., Xia, X. P., Long, X. P. & Wu, F. Y. 2010. The 390 Ma high-T metamorphism in the Chinese Altai: consequence of ridge-subduction? American Journal of Science 310 (10), 1421–52.Google Scholar
Johnson, M. C. & Plank, T. 1999. Dehydration and melting experiments constrain the fate of subducted sediments. Geochemistry, Geophysics, Geosystems 1, 1007. doi: 10.1029/1999GC000014.Google Scholar
Karsten, J. L., Klein, E. M. & Sherman, S. B. 1996. Subduction zone geochemical characteristics in ocean ridge basalts from the southern Chile Ridge: implication of modern ridge subduction systems for the Archean. Lithos 37, 143–61.Google Scholar
Kempton, P. D., Pearce, J. A., Barry, T. L., Fitton, J. G., Langmuir, C. & Christie, D. M. 2002. Sr–Nd–Pb–Hf isotope results from ODP leg 187: evidence for mantle dynamics of the Australian–Antarctic Discordance and origin of the Indian MORB source. Geochemistry Geophysics Geosystems 3, 135.Google Scholar
Kessel, R., Schmidt, M. W., Ulmer, P. & Pettke, T. 2005. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature 437, 724–7.Google Scholar
Knesel, K. M. & Davidson, J. P. 1996. Isotopic disequilibrium during melting of granite and implications for crustal contamination of magmas. Geology 24, 243–6.Google Scholar
Kröner, A., Hegner, E., Lehmann, B., Heinhorst, J., Wingate, M., Liu, D. & Ermelov, P. 2008.Palaeozoic arc magmatism in the Central Asian Orogenic Belt of Kazakhstan: SHRIMP zircon ages and whole-rock Nd isotopic systematics. Journal of Asian Earth Sciences 32, 118–30.Google Scholar
Kröner, A., Kovach, V., Belousova, E., Hegner, E., Armstrong, R., Dolgopolova, A., Seltmann, R., Alexeiev, D. V., Hoffmann, J. E., Wong, J., Sun, M., Cai, K., Wang, T., Tong, Y., Wilde, S. A., Degtyarev, K. E. & Rytsk, E. 2014. Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Research 25, 103–25.Google Scholar
Long, X. P., Sun, M., Yuan, C., Xiao, W. J., Lin, S. F., Wu, F. Y., Xia, X. P. & Cai, K. D. 2007. U–Pb and Hf isotopic study of zircons from metasedimentary rocks in the Chinese Altai: implications for Early Palaeozoic tectonic evolution. Tectonics 26, TC5015. doi: 10.1029/2007TC002128.Google Scholar
Long, X. P., Yuan, C., Sun, M., Xiao, W., Wang, Y., Cai, K. & Jiang, Y. 2012. Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: evidence for a northward-derived mafic source and insight into Nd model ages in accretionary orogen. Gondwana Research 22, 554–66.Google Scholar
Long, X. P., Yuan, C., Sun, M., Xiao, W. J., Zhao, G. C., Wang, Y. J. & Cai, K. D. 2010. Detrital zircon ages and Hf isotopes of the early Paleozoic Flysch sequence in the Chinese Altai, NW China: new constraints on depositional age, provenance and tectonic evolution. Tectonophysics 180, 213–31.Google Scholar
Lv, Z. H., Zhang, H., Tang, Y. & Guan, S. J. 2012. Petrogenesis and magmatic hydrothermal evolution time limitation of Kelumute No. 112 pegmatite in Altay, Northwestern China: evidence from zircon U—Pb and Hf isotopes. Lithos 154, 374–91.Google Scholar
McCulloch, M. T. & Gamble, J. 1991. Geochemical and geodynamical constraints on subduction zone magmatism. Earth and Planetary Science Letters 102, 358–74.Google Scholar
Miller, C. F. 1985. Are strongly peralumious magmas derived from pelitic-sedimentary sources? J. Geol. 93, 673–89.Google Scholar
Münker, C., Worner, G., Yogodzinski, G. & Churikova, T. 2004. Behaviour of high field strength elements in subduction zones: constraints from Kamchatka-Aleutian arc lavas. Earth and Planetary Science Letters 224, 275–93.Google Scholar
Nebel, O., Münker, C., Nebel-Jacobsen, Y. J., Kleine, T., Mezger, K. & Mortimer, N. 2007. Hf-Nd-Pb isotope evidence from Permian arc rocks for the long-term presence of the Indian-Pacific mantle boundary in the SW Pacific. Earth and Planetary Science Letters 254, 377–92.Google Scholar
Osamu, K. 1995. Migration of igneous activities related to ridge subduction in Southwest Japan and the East Asian continental margin from the Mesozoic to the Paleogene. Tectonophysics 245, 2535.Google Scholar
Patiño Douce, A. E. & Johnston, A. D. 1991. Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contributions to Mineralogy and Petrology 107, 202–18.Google Scholar
Pearce, J. A., Kempton, P. D. & Gill, J. B. 2007. Hf–Nd evidence for the origin and distribution of mantle domains in the SW Pacific. Earth and Planetary Science Letters 260, 98114.Google Scholar
Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. 1999. Hf-Nd element isotope perspective on the nature and provenance of mantle and subduction components in Western Pacific arc-basin systems. Journal of Petroleum Geology 40, 1579–611.Google Scholar
Pearce, J. A. & Peate, D. W. 1995. Tectonic implications of the compositions of volcanic arc magmas. Annual Review of Earth and Planetary Sciences 23, 251– 85.Google Scholar
Plank, T. & Langmuir, C. H. 1998. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chemical Geology 145, 325–94.Google Scholar
Safonova, I. Y., Buslov, M. M., Iwata, K. & Kokh, D. A. 2004. Fragments of Vendian-Early Carboniferous oceanic crust of the Paleo-Asian Ocean in foldbelts of the Altai Sayan region of Central Asia: geochemistry, biostratigraphy and structural setting. Gondwana Research 7, 771–90.Google Scholar
Santosh, M. & Kusky, T. 2010. Origin of paired high pressure-ultrahigh-temperature orogens: a ridge subduction and slab window model. Terra Nova 22, 3542.Google Scholar
Sengör, A. M. C. & Natal'in, B. A. 1996. Turkic-type orogeny and its role in the making of the continental crust. Annual Review of Earth and Planetary Sciences 24, 263337.Google Scholar
Sengör, A. M. C., Natal'in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature 364, 299307.Google Scholar
Spandler, C. & Pirard, C. 2013. Element recycling from subducting slabs to arc crust: a review. Lithos 170–171, 208–23.Google Scholar
Staudigel, H., Davies, G. R., Hart, S. R., Marchant, K. M. & Smith, B. M. 1995. Large scale isotopic Sr, Nd and O isotopic anatomy of altered oceanic crust: DSDP/ODP sites 417/418. Earth and Planetary Science Letters 130 (1–4), 169–85.Google Scholar
Su, B. X., Qin, K. Z., Lu, Y. H., Sun, H. & Sakyi, P. A. 2015. Decoupling of whole-rock Nd-Hf and zircon Hf-O isotopic compositions of a 284 Ma mafic-ultramafic intrusion in the Beishan Terrane, NW China. International Journal of Earth Sciences 104, 1721–37.Google Scholar
Su, B. X., Qin, K. Z., Sakyi, P. A., Li, X. H., Yang, Y. H., Sun, H., Tang, D. M., Liu, P. P., Xiao, Q. H., Malaviarachchi, S. P. K. 2011. U—Pb ages and Hf-O isotopes of zircons from Late Paleozoic mafic-ultramafic units in southern Central Asian Orogenic Belt: tectonic implications and evidence for an Early-Permian mantle plume. Gondwana Research 20, 516–31.Google Scholar
Sun, M., Long, X. P., Cai, K. D., JiangY. D., B. Y, W. Y. D., B. Y, W., Yuan, C., Zhao, G. C., Xiao, W. J. & Wu, F. Y. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China 39, 114.Google Scholar
Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., Lin, S., Wu, F. & Kröner, A. 2008. Zircon U—Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology 247, 352–83.Google Scholar
Sylvester, P. J. 1998. Post-collisional strongly peraluminous granites. Lithos 45, 2944.Google Scholar
Tang, M., Wang, X. L., Shu, X. J., Wang, D., Yang, T. & Gopon, P. 2014. Hafnium isotopic heterogeneity in zircons from granitic rocks: geochemical evaluation and modeling of ‘zircon effect’ in crustal anatexis. Earth and Planetary Science Letters 389, 188–99.Google Scholar
Tatsumi, Y. 1989. Migration of fluid phases and genesis of basalt magmas in subduction zones. Journal of Geophysical Research 94, 4697–707.Google Scholar
Thorkelson, D. J. 1996. Subduction of diverging plates and the principles of slab window formation. Tectonophysics 255, 4763.Google Scholar
Tollstrup, D. L. & Gill, J. B. 2005. Hafnium systematics of the Mariana arc: evidence for sediment melt and residual phases. Geology 33, 737–40.Google Scholar
Tommasini, S. & Davies, G. R. 1997. Isotope disequilibrium during anatexis: a case study of contact melting, Sierra Nevada, California. Earth and Planetary Science Letters 148, 273–85.Google Scholar
Tong, Y., Wang, T., Hong, D. W., Dai, Y. J., Han, B. F. & Liu, X. M. 2007. Ages and origin of the early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica 23, 1933–44.Google Scholar
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge, Cambridge University Press, 456 pp.Google Scholar
Turner, S., Handler, M., Bindeman, I. & Suzuki, K. 2009. New insights into the origin of O-Hf-Os isotope signatures in arc lavas from Tonga-Kermadec. Chemical Geology 266, 196202.Google Scholar
Wang, T., Hong, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F. & Wang, X. X. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: implications for the tectonic evolution of an accretionary Orogen. Journal of Geology 114, 735–51.Google Scholar
Wang, T., Jahn, B. M., Kovach, V. P., Tong, Y., Hong, D. W. & Han, B. F. 2009. Nd-Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110, 359–72.Google Scholar
Wang, Y. J., Long, X., Wilde, S., Xu, H., Sun, M., Xiao, W., Yuan, C. & Cai, K. 2014. Provenance of Early Paleozoic metasediments in the central Chinese Altai: implications for tectonic affinity of the Altai-Mongolia terrane in the Central Asian Orogenic Belt. Lithos 210–211, 5768.Google Scholar
Wang, Y. J., Yuan, C., Long, X. P., Sun, M., Xiao, W. J., Zhao, G. C., Cai, K. D. & Jiang, Y. D. 2011. Geochemistry, zircon U—Pb ages and Hf isotopes of the Paleozoic volcanic rocks in the northwestern Chinese Altai: petrogenesis and tectonic implications. Journal of Asian Earth Sciences 42, 969–85.Google Scholar
Watson, E. B. & Harrison, T. M. 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters 64 (2), 295304.Google Scholar
White, W. M. & Patchett, J. 1984. Hf Nd Sr isotopes and incompatible element abundances in island arcs: implications for magma origins and crust-mantle evolution. Earth and Planetary Science Letters 67 (2), 167–85.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W., Kroner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society 164, 3147.Google Scholar
Windley, B. F., Kröner, A., Guo, J., Qu, G., Li, Y. & Zhang, C. 2002. Neoproterozoic to Palaeozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology 110, 719–39.Google Scholar
Woodhead, J. D., Hergt, J. M., Davidson, J. P. & Eggins, S. M. 2001. Hafnium isotope evidence for ‘conservative’ element mobility during subduction processes. Earth and Plane Science Letters 192, 331–46.Google Scholar
Xiao, W. J., Han, C. M., Yuan, C., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of Northern Xinjiang, NW China: implications for the tectonic evolution of central Asia. Journal of Asian Earth Sciences 32, 102–17.Google Scholar
Xiao, W. J., Huang, B. C., Han, C. M., Sun, S. & Li, J. L. 2010. A review of the western part of the Altaids: a key to understanding the architecture of accretionary orogens. Gondwana Research 18, 253–73.Google Scholar
Xiao, W. J., Kröner, A. & Windley, B. 2009. Geodynamic evolution of Central Asia in the Paleozoic and Mesozoic. International Journal of Earth Sciences 98, 1185–8.Google Scholar
Xiao, W. J. & Santosh, M. 2014. The western Central Asian Orogenic Belt: a window to accretionary orogenesis and continental growth. Gondwana Research 25 (4), 1429–44.Google Scholar
Xiao, W. J., Windley, B. F., Badararch, G., Li, J., Sun, S., Qin, K. & Wang, Z. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the growth of central Asia. Journal of Geological Society London 161, 14.Google Scholar
Xiao, Y., Zhang, H. F., Shi, J. A., Su, B. X., Sakyi, P. A., Hu, Y. & Zhang, Z. 2011. Late Paleozoic magmatic record of East Junggar, NW China and its significance: implication from zircon U—Pb dating and Hf isotope. Gondwana Research 20, 532–42.Google Scholar
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F. & Wu, F. Y. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. Science in China Series D: Earth Sciences 53, 220–8.Google Scholar
Yakubchuk, A. S. 2004. Architecture and mineral deposit settings of Altaid orogenic collage: a revised model. Journal of Asian Earth Sciences 23, 761–79.Google Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A., Xie, L. W., Yang, Y. H. & Liu, X. M. 2007. Tracing magma mixing in granite genesis: in situ U—Pb dating and Hf isotope analysis of zircons. Contributions to Mineralogy and Petrology 153, 177–90.Google Scholar
Yin, J. Y., Chen, W., Yuan, C., Yu, S., Xiao, W. J., Long, X. P., Li, J. & Sun, J. B. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Research 27, 1630–45.Google Scholar
Yin, J. Y., Yuan, C., Sun, M., Long, X. P., Zhao, G. C. & Geng, H. Y. 2010. Late Carboniferous High-Mg dioritic dykes in Western Junggar, NW China: geochemical features, petrogenesis and tectonic implications. Gondwana Research 17, 145–52.Google Scholar
You, C. F., Castillo, P. R., Gieskes, J. M., Chan, L. H. & Spivack, A. J. 1996. Trace element behaviour in hydrothermal experiments: implications for fluid processes at shallow depths in subduction zones. Earth and Planetary Science Letters 140, 4152.Google Scholar
Yu, Y., Sun, M., Long, X. P., Li, P. F., Zhao, G. C., Kröner, A., Broussolle, A. & Yang, J. H. 2016. Whole-rock Nd-Hf isotopic study of I-type and peraluminous granitic rocks from the Chinese Altai: constraints on the nature of the lower crust and tectonic setting. Gondwana Research 47, 142–60.Google Scholar
Yuan, H., Gao, S., Liu, X., Li, H., Günther, D. & Wu, F. 2004. Accurate U—Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards and Geoanalytical Research 28, 353–70.Google Scholar
Yuan, C., Sun, M., Xiao, W. J., Li, X. H., Chen, H. L., Lin, S. F., Xia, X. P. & Long, X. P. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology 242, 2239.Google Scholar
Zeng, L.-S., Asimow, P. D. & Saleeby, J. B. 2005a. Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentory source. Geochimica et Cosmochimica Acta 69, 3671–82.Google Scholar
Zeng, L.-S., Saleeby, J. B. & Asimow, P. 2005 b. Nd isotopic disequilibrium during crustal anatexis: a record from the Goat Ranch migmatite complex, southern Sierra Nevada batholith, California. Geology 33, 53–6.Google Scholar
Zhang, C., Liu, L. F., Santosh, M. & Zhang, X. 2016. Sediment recycling and crustal growth in the Central Asian Orogenic Belt: evidence from Sr-Nd-Hf isotopes and trace elements in granitoids of the Chinese Altay. Gondwana Research 47, 142–60.Google Scholar
Zhang, H. F., Sun, M., Lu, F. X., Zhou, X. H., Zhou, M. F., Liu, Y. S. & Zhang, G. H. 2001. Geochemical significance of a garnet lherzolite from the Dahongshan kimberlite, Yangtze Craton, southern China. Geochemical Journal 35, 315–31.Google Scholar
Zhang, Z. M., Zhao, G. C., Santosh, M., Wang, J. L., Dong, X. & Shen, K. 2010. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeasternTibet: evidence for Neo-Tethyan mid-ocean ridge subduction? Gondwana Research 17, 615–31.Google Scholar
Zhao, Z. H., Xiong, X. L., Wang, Q., Bai, Z. H. & Qiao, Y. L. 2009. Late Paleozoic underplating in North Xinjiang: evidence from shoshonites and adakites. Gondwana Research 16, 216–26.Google Scholar