Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T04:37:45.297Z Has data issue: false hasContentIssue false

The origin and significance of pedogenic dolomite from the Upper Permian of the South Urals of Russia

Published online by Cambridge University Press:  13 September 2011

TIMOTHY KEARSEY*
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
RICHARD J. TWITCHETT
Affiliation:
School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
ANDREW J. NEWELL
Affiliation:
British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
*
Author for correspondence: [email protected]

Abstract

Pedogenic carbonate nodules from six sections spanning the continental Permian–Triassic boundary in the South Urals, Russia, were analysed. Morphological, petrographic, SEM and XRD analyses have demonstrated that many of the latest Permian palaeosols are dolomitic. This dolomite forms the microcrystalline (5–16 μm) groundmass of the nodules. Later diagenetic phases, represented by coarser crystalline textures, were identified as calcite. Isotopic analysis of the microcrystalline dolomite has revealed it to be similar in isotopic composition to authigenic dolomite forming today in saline soils in Alberta, Canada. These data indicate that the dolomite found in these nodules is pedogenic, and formed in equilibrium with the atmosphere. Upper Permian pedogenic dolocretes in the studied sections are most frequent in (a) palaeosols that formed on palaeo-highs and (b) in the latest Permian period (Changhsingian), which may indicate that there was an increase in seasonality and evaporation in the South Urals region at this time. The presence of only calcitic palaeosols in the earliest Triassic may reflect a subsequent dramatic change in the basin conditions, possibly relating to the Permian–Triassic mass extinction, which stopped the conditions that are necessary for dolomite formation.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, M. & Lawrence, D. F. 1972. Geological Laboratory Techniques. London: Blandford Press, 335 pp.Google Scholar
Alonso-Zarza, A. M. 2003. Palaeoenvironmental significance of palustrine carbonates and calcretes in the geological record. Earth Science Reviews 60, 261–98.CrossRefGoogle Scholar
Arche, A. & López-Gómez, J. 2005. Sudden changes in fluvial style across the Permian-Triassic boundary in the eastern Iberian Ranges, Spain: analysis of possible causes. Palaeogeography, Palaeoclimatology, Palaeoecology 229, 104–26.CrossRefGoogle Scholar
Arvidson, R. S. & Mackenzie, F. T. 1999. The dolomite problem: control of precipitation kinetics by temperature and saturation state. American Journal of Science 299, 257–88.CrossRefGoogle Scholar
Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. 2004. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97100.Google ScholarPubMed
Benito, M. I., de la Horra, R., Barrenechea, J. F., López-Gómez, J., Rodas, M., Alonso-Azcárate, J., Arche, A. & Luque, J. 2005. Late Permian continental sediments in the SE Iberian Ranges, eastern Spain: petrological and mineralogical characteristics and palaeoenvironmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology 229, 2439.CrossRefGoogle Scholar
Bestland, E. A. & Krull, E. S. 1999. Palaeoenvironments of Early Miocene Kisingiri volcano Proconsul sites: evidence from carbon isotopes, palaeosols and hydromagmatic deposits. Journal of the Geological Society, London 156, 965–76.CrossRefGoogle Scholar
Bui, E. N., Loeppert, R. H. & Wilding, L. P. 1990. Carbonate phases in calcareous soils of the Western United States. Soil Science Society of America 54, 3945.CrossRefGoogle Scholar
Bustillo, M. A. & Alonso-Zarza, A. M. 2007. Overlapping of pedogenesis and meteoric diagenesis in distal alluvial and shallow lacustrine deposits in the Madrid Miocene Basin, Spain. Sedimentary Geology 196, 255–71.Google Scholar
Calvo, J. P., Jones, B. F., Bustillo, M. A., Fort, R., Alonso-Zarza, A. M. & Kendall, C. 1995. Sedimentology and geochemistry of carbonates from lacustrine sequences in the Madrid Basin, Central Spain. Chemical Geology 123, 173–91.CrossRefGoogle Scholar
Capo, R. C., Whipkey, C. E., Blachère, J. R. & Chadwick, O. A. 2000. Pedogenic origin of dolomite in a basaltic weathering profile, Kohala peninsula, Hawaii. Geology 28, 271–4.2.0.CO;2>CrossRefGoogle Scholar
Colson, J. & Cojan, I. 1996. Groundwater dolocretes in a lake-marginal environment: an alternative model for dolocrete formation in continental settings (Danian of the Provence Basin, France). Sedimentology 43, 175–88.CrossRefGoogle Scholar
Coney, L., Reimold, W. U., Hancox, P. J., Mader, D., Koeberl, C., McDonald, I., Struck, U., Vajda, V. & Kamo, S. L. 2007. Geochemical and mineralogical investigation of the Permian–Triassic boundary in the continental realm of the southern Karoo Basin, South Africa. Palaeoworld 16, 67107.CrossRefGoogle Scholar
Del Cura, M. A. G., Calvo, J. P., Ordóñez, S., Jones, B. F. & Cañaveras, J. C. 2001. Petrographic and geochemical evidence for the formation of primary bacterially induced lacustrine dolomite; La Roda ‘white earth’ (Pliocene, central Spain). Sedimentology 48, 897915.CrossRefGoogle Scholar
de la Horra, R., Benito, M. I., López-Gómez, J., Arche, A., Barrenechea, J. F. & Luque, J. 2008. Palaeoenvironmental significance of Late Permian palaeosols in the South-Eastern Iberian Ranges, Spain. Sedimentology 55, 1849–73.CrossRefGoogle Scholar
Dickson, J. A. D. 1966. Carbonate identification and genesis as revealed by staining. Journal of Sedimentary Petrology 36, 491505.Google Scholar
Erwin, D. H. 2006. Extinction: How life on earth nearly ended 250 million years ago. Princeton: Princeton University Press, 296 pp.Google Scholar
Gastaldo, R. A. & Rolerson, M. W. 2008. Katbergia gen. nov., a new trace fossil from Upper Permian and Lower Triassic rocks of the Karoo Basin: implications for palaeoenvironmental conditions at the P/Tr extinction event. Palaeontology 51, 215–29.Google Scholar
Ghosh, P., Ghosh, P. & Bhattacharya, S. K. 2001. CO2 levels in the Late Palaeozoic and Mesozoic atmosphere from soil carbonate and organic matter, Satpura basin, Central India. Palaeogeography, Palaeoclimatology, Palaeoecology 170, 219–36.CrossRefGoogle Scholar
Gómez-Gras, D. & Alonso-Zarza, A. M. 2003. Reworked calcretes: their significance in the reconstruction of alluvial sequences (Permian and Triassic, Minorca, Balearic Islands, Spain). Sedimentary Geology 158, 299319.CrossRefGoogle Scholar
Hounslow, M. W., Peters, C., Mørk, A., Weitschat, W. & Os Vigran, J. 2008. Biomagnetostratigraphy of the Vikinghøgda Formation, Svalbard (Arctic Norway), and the geomagnetic polarity timescale for the Lower Triassic. Geological Society of America Bulletin 120, 1305–25.CrossRefGoogle Scholar
Joint Committee on Powder Diffraction Standards. 1971. Inorganic Index to the Powder Diffraction File Pennsylvania. Joint Committee on Powder Diffraction Standards, 1322 pp.Google Scholar
Kearsey, T., Twitchett, R. J., Price, G. D. & Grimes, S. T. 2009. Isotope excursions and palaeotemperature estimates from the Permian/Triassic boundary in the Southern Alps (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 279, 2940.CrossRefGoogle Scholar
Kessler, J. L. P., Soreghan, G. S. & Wacker, H. J. 2001. Equatorial aridity in western Pangea: Lower Permian loessite and dolomitic paleosols in northeastern New Mexico, USA. Journal of Sedimentary Research 71, 817–32.CrossRefGoogle Scholar
Khadkikar, A. S., Chamyal, L. S. & Ramesh, R. 2000. The character and genesis of calcrete in Late Quaternary alluvial deposits, Gujartat, western India, and its bearing on the interpretation of ancient climates. Palaeogeography, Palaeoclimatology, Palaeoecology 162, 239–61.CrossRefGoogle Scholar
Kidder, D. L. & Worsley, T. R. 2004. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeography, Palaeoclimatology, Palaeoecology 203, 207–37.CrossRefGoogle Scholar
Kohut, K., Muehlenbacks, K. & Dudas, M. J. 1995. Authigenic dolomite in a saline soil in Alberta, Canada. Soil Science Society of America Journal 59, 1499–504.CrossRefGoogle Scholar
Krull, E. S. & Retallack, G. J. 2000. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release. Geological Society of America Bulletin 112, 1459–72.2.0.CO;2>CrossRefGoogle Scholar
Leeder, M. 1999. Sedimentology and Sedimentary Basins: From Turbulence to Tectonic. Oxford: Blackwells Science Ltd, 592 pp.Google Scholar
Mack, G. H., James, W. C. & Monger, H. C. 1993. Classification of paleosols. Geological Society of America Bulletin 105, 129–36.2.3.CO;2>CrossRefGoogle Scholar
Machette, M. N. 1985. Calcic soils of southwestern United States. In Soil and Quaternary Geology of the Southwestern United States (ed. Weide, D. L.), pp. 121. Geological Society of America Special Paper 203.Google Scholar
MacLeod, K. G., Smith, R. M. H., Koch, P. L. & Ward, P. D. 2000. Timing of mammal-like reptile extinctions across the Permian-Triassic boundary in South Africa. Geology 28, 227–30.2.0.CO;2>CrossRefGoogle Scholar
Miller, J. 1988. Microscopical techniques I. Slices, slides, stains and peels. In Techniques in Sedimentology (ed. Tucker, M. E.), pp. 86107. Oxford: Blackwell Science.Google Scholar
Monger, H. C., LeRoy, A. D., Lindemann, W. C. & Liddell, C. M. 1991. Microbial precipitation of pedogenic calcite. Geology 19, 9971000.2.3.CO;2>CrossRefGoogle Scholar
Newell, A. J., Tverdokhlebov, V. P. & Benton, M. J. 1999. Interplay of tectonics and climate on a transverse fluvial system, Upper Permian, Southern Uralian Foreland Basin, Russia. Sedimentary Geology 127, 1129.CrossRefGoogle Scholar
Pace, D. W., Gastaldo, R. A. & Neveling, J. 2009. Early Triassic aggradation and degradation landscapes of the Karoo Basin and evidence for climate oscillations following the P-Tr event. Journal of Sedimentary Research 79, 316–31.CrossRefGoogle Scholar
Quast, A., Hoefs, J. & Paul, J. 2006. Pedogenic carbonates as a proxy for palaeo-CO2 in the Palaeozoic atmosphere. Palaeogeography, Palaeoclimatology, Palaeoecology 242, 110–25.CrossRefGoogle Scholar
Retallack, G. J. 1993. Classification of paleosols: discussion. Geological Society of America Bulletin 105, 383400.Google Scholar
Retallack, G. J. 2001. Soils of the Past − An Introduction to Paleopedology. Oxford: Blackwell Science, 404 pp.CrossRefGoogle Scholar
Retallack, G. J. & Jahren, A. H. 2008. Methane release from igneous intrusion of coal during Late Permian extinction events. Journal of Geology 116, 120.CrossRefGoogle Scholar
Retallack, G. J. & Krull, E. S. 1999. Landscape ecological shift at the Permian-Triassic boundary in Antarctica. Australian Journal of Earth Sciences 46, 785812.CrossRefGoogle Scholar
Retallack, G. J., Metzger, C. A., Greaver, T., Jahren, A. H., Smith, R. M. H. & Sheldon, N. D. 2006. Middle-Late Permian mass extinction on land. Geological Society of America Bulletin 118, 1398–411.CrossRefGoogle Scholar
Retallack, G. J. & Mindszenty, A. 1994. Well preserved Late Precambrian paleosols from northwest Scotland. Journal of Sedimentary Research A64, 264–81.Google Scholar
Retallack, G. J., Smith, R. M. H. & Ward, P. D. 2003. Vertebrate extinction across Permian-Triassic boundary in Karoo Basin, South Africa. Geological Society of America Bulletin 115, 1133–52.CrossRefGoogle Scholar
Roberts, J. A., Bennett, P. C., Gonzalez, L. A., Macpherson, G. L. & Milliken, K. L. 2004. Microbial precipitation of dolomite in methanogenic groundwater. Geology 32, 277–80.CrossRefGoogle Scholar
Sánchez-Román, M., Vasconcelos, C., Schmid, T., Dittrich, M., McKenzie, J. A., Zenobi, R. & Rivadeneyra, M. A. 2008. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology 36, 879–82.CrossRefGoogle Scholar
Sheldon, N. D. & Retallack, G. J. 2002. Low oxygen levels in earliest Triassic soils. Geology 30, 919–22.2.0.CO;2>CrossRefGoogle Scholar
Sheldon, N. D. & Tabor, N. J. 2009. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth Science Reviews 95, 152.CrossRefGoogle Scholar
Sherman, L. A. & Barak, P. 2000. Solubility and dissolution kinetics of dolomite in Ca-Mg-HCO3/CO3 solutions at 25 degrees C and 0.1 MPa carbon dioxide. Soil Science Society of America Journal 64, 1959–68.CrossRefGoogle Scholar
Soil Survey Staff. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, Agriculture Handbook Number 436. United States Department of Agriculture Natural Resources Conservation Service, 871 pp.Google Scholar
Spötl, C. & Wright, V. P. 1992. Groundwater dolocretes from the Upper Triassic of the Paris Basin, France − a case-study of an arid, continental diagenetic facies. Sedimentary Geology 39, 1119–36.Google Scholar
Steiner, M. B. 2006. The magnetic polarity time scale across the Permian-Triassic boundary. In Non-Marine Permian Biostratigraphy and Biochronology (eds Lucas, S. G., Cassinis, G. & Schneider, J. W.), pp. 1538. Geological Society of London, Special Publication no 265.Google Scholar
Surkov, M. V., Benton, M. J., Twitchett, R. J., Tverdokhlebov, V. P. & Newell, A. J. 2007. First occurrence of footprints of large therapsids from the Upper Permian of European Russia. Palaeontology 59, 641–52.CrossRefGoogle Scholar
Tabor, N. J., Montanez, I. P., Steiner, M. B. & Schwindt, D. 2007. Delta C-13 values of carbonate nodules across the Permian-Triassic boundary in the Karoo Supergroup (South Africa) reflect a stinking sulfurous swamp, not atmospheric CO2. Palaeogeography, Palaeoclimatology, Palaeoecology 252, 370–81.CrossRefGoogle Scholar
Taylor, G. K., Tucker, C., Twitchett, R. J., Kearsey, T., Benton, M. J., Newell, A. J., Surkov, M. V. & Tverdokhlebov, V. P. 2009. Magnetostratigraphy of Permian/Triassic boundary sequences in the Cis-Urals, Russia: No evidence for a major temporal hiatus. Earth and Planetary Science Letters 281, 3647.CrossRefGoogle Scholar
Tverdokhlebov, V. P., Tverdokhlebova, G. I., Minikh, A. V., Surkov, M. V. & Benton, M. J. 2005. Upper Permian vertebrates and their sedimentological context in the Southern Urals, Russia. Earth Science Reviews 69, 2777.CrossRefGoogle Scholar
Tverdokhlebov, V. P., Tverdokhlebova, G. I., Surkov, M. V. & Benton, M. J. 2002. Tetrapod localities from the Triassic of the SE of European Russia. Earth Science Reviews 60, 166.CrossRefGoogle Scholar
Ufnar, D. F., Gröcke, D. R. & Beddows, P. A. 2008. Assessing pedogenic calcite stable-isotope values: can positive linear covariant trends be used to quantify palaeo-evaporate rates? Chemical Geology 256, 4651.CrossRefGoogle Scholar
Vahrenkamp, V. C. & Swart, P. K. 1994. Late Cenozoic dolomites of the Bahamas: metastable analogues for the genesis of ancient platform dolomites. Special Publications of the Institute of Associated Sedimentology 21, 133–53.Google Scholar
Van der Voo, R. & Torsvik, T. H. 2004. The quality of the European Permo-Triassic paleopoles and its impact on Pangea reconstructions. In Timescales of the Paleomagnetic Field (eds Channel, J. E. T., Kent, D. V., Lowrie, W. & Meert, J. G.), pp. 2942. American Geophysical Union, Geophysical Monograph vol. 145. Washington DC, USA.Google Scholar
Wacey, D., Wright, D. T. & Boyce, A. J. 2007. A stable isotope study of microbial dolomite formation in the Coorong Region, South Australia. Chemical Geology 244, 155–74.CrossRefGoogle Scholar
Ward, P. D., Botha, J., Buick, R., De Kock, M. O., Erwin, D. H., Garrison, G. H., Kirschvink, J. L. & Smith, R. 2005. Abrupt and gradual extinction among Late Permian land vertebrates in the Karoo Basin, South Africa. Science 307, 709–14.CrossRefGoogle ScholarPubMed
Watts, N. L. 1980. Quaternary pedogenic calcretes from the Kalahari (southern Africa): mineralogy, genesis and diagenesis. Sedimentology 27, 661–86.CrossRefGoogle Scholar
Williams, C. A. & Krause, F. F. 1998. Pedogenic-phreatic carbonates on a Middle Devonian (Givetian) terrigenous alluvial-deltaic plain, Gillwood member (Watt Mountain formation), northcentral Alberta, Canada. Sedimentology 45, 1105–24.CrossRefGoogle Scholar
Wright, V. P. & Tucker, M. E. 1991. Calcretes – an introduction. In Calcretes (eds Wright, V. P. & Tucker, M. E.) pp. 122. Oxford: Blackwell Scientific Publications.CrossRefGoogle Scholar
Wright, D. T. & Wacey, D. 2005. Precipitation of dolomite using sulphate-reducing bacteria from Coorong Region, South Australia: significance and implications. Sedimentology 52, 9871008.CrossRefGoogle Scholar
Wynn, J. G. 2007. Carbon isotope fractionation during decomposition of organic matter in soils and paleosols: implications for paleoecological interpretations of paleosols, Palaeogeography, Palaeoclimatology, Palaeoecology 251, 437–48.CrossRefGoogle Scholar
Supplementary material: File

Kearsey Supplementary Appendix

Kearsey Supplementary Appendix

Download Kearsey Supplementary Appendix(File)
File 939 KB