Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-08T07:18:44.438Z Has data issue: false hasContentIssue false

On the Antarctic Peninsula batholith

Published online by Cambridge University Press:  01 May 2009

P. T. Leat
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
J. H. Scarrow
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK
I. L. Millar
Affiliation:
British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, UK

Abstract

The plutonic rocks of the Antarctic Peninsula magmatic arc form one of the major batholiths of the circum-Pacific rim. The Antarctic Peninsula batholith is a 1350 km long by < 210 km wide structure which was emplaced over the period ˜240 to 10 Ma, with a Cretaceous peak of activity that started at 142 Ma and waned during the Late Cretaceous. Early Jurassic and Late Jurassic–Early Cretaceous gaps in intrusive activity probably correspond to episodes of arc compression. In a northern zone of the Antarctic Peninsula, the batholith intrudes Palaeozoic–Mesozoic low-grade meta-sedimentary rocks, and in a central zone it intrudes schists and ortho- and paragneisses which have Late Proterozoic Nd model ages and were deformed during Triassic to Early Jurassic compression. In a southern zone the oldest exposed rocks are Permian sedimentary rocks and deformed Jurassic volcanic and sedimentary rocks. All these pre-batholith rocks formed a belt of relatively immature crust along the Gondwana margin. With few exceptions, Jurassic plutons crop out only within the central zone: many are peraluminous, having ‘S-like’ mineralogies and relatively high 87sr/86sri. They are considered to consist largely of partial melts of upper crust schists and gneisses and components of mafic magmas that caused the partial fusion. By contrast, Early Cretaceous plutons crop out along the length of the batholith. Few magma compositions appear to have been affected by upper crust, the bulk being compositionally independent of the type of country rock they intrude. They are dominated by metaluminous, calcic, Si-oversaturated, 1-type granitoid rocks with relatively low 87sr/86sri intermediate-silicic compositions (< 5% MgO). We interpret these to represent partial melts of basic to intermediate, igneous, locally garnet-bearing, lower crust. Contemporaneous mafic magmas (e.g. syn-plutonic dykes) form a more alkaline, Si-saturated series having higher 143Nd/144Nd at the same87sr/86sr than the intermediate-silicic series, to which they are not petrogenetically related. The change from limited partial fusion of upper crust in Jurassic times to widespread partial fusion of lower crust in Early Cretaceous times is considered to be a result of an increasing volume of basaltic intrusion into the crust with time.

Type
Articles
Copyright
Copyright © Cambridge University Press 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adie, R. J., 1955. The petrology of Graham Land II. The Andean granite-gabbro intrusive suite. Falkland Islands Dependencies Survey Scientific Report 12, 139.Google Scholar
Adie, R. J., 1957. The petrology of Graham Land III. Metamorphic rocks of the Trinity Peninsula Series. Falkland Islands Dependencies Survey Scientific Report 20, 126.Google Scholar
Adie, R. J., 1964. Geological history. In Antarctic Research (eds Priestly, R., Adie, R. J. and Robin, G. De Q.), pp. 118–62. London: Butterworths.Google Scholar
Alabaster, T. & Storey, B. C., 1990. Antarctic Peninsula continental magnesian andesites: indicators of ridge—trench interaction during Gondwana break-up. Journal of the Geological Society, London 147, 595–8.CrossRefGoogle Scholar
Armstrong, R. L., Taubeneck, W. H. & Hales, P. O., 1977. Rb—Sr and K—Ar geochronometry of Mesozoic granitic rocks and their Sr isotope composition, Oregon, Washington, and Idaho. Geological Society of America Bulletin 88. 397411.Google Scholar
Atherton, M. P., 1984. The coastal batholith of Peru. In Andean Magmatism: Chemical and Isotopic Constraints (eds Harmon, R. S. and Barreiro, B. A.), pp. 168–79. Nantwich, Cheshire: Shiva.Google Scholar
Atherton, M. P., 1990. The Coastal batholith of Peru: the product of rapid recycling of ‘new’ crust formed within rifted continental margin. Geological Journal 25, 337–49.CrossRefGoogle Scholar
Atherton, M. P. & Petford, N., 1993. Generation of sodiumrich magmas from newly underplated basaltic crust. Nature 362, 144–6.Google Scholar
Barker, P. F., 1982. The Cenozoic subduction history of the Pacific margin of the Antarctic Peninsula: ridge crest-trench interactions. Journal of the Geological Society, London 139, 787801.CrossRefGoogle Scholar
Bateman, P. C., 1983. A summary of critical relations in the central part of the Sierra Nevada batholith, California U.S.A. In Circum-Pacific Plutonic Terranes (ed. Roddick, J. A.), pp. 241–54. Geological Society of America Memoir no. 159.CrossRefGoogle Scholar
Brandon, A. D. & Smith, A. D., 1994. Mesozoic granitoid magmatism in southeast British Columbia: implications for the origin of granitoid belts in the North American Cordillera. Journal of Geophysical Research 99, 11879–96.CrossRefGoogle Scholar
Butterworth, P. J., Crame, J. A., Howlett, P. J. & Macdonald, D. I. M., 1988. Lithostratigraphy of Upper Jurassic—Lower Cretaceous strata of eastern Alexander Island, Antarctica. Cretaceous Research 9, 249–64.CrossRefGoogle Scholar
Clemens, J. D. & Vielzeuf, D., 1987. Constraints on melting and magma production in the crust. Earth and Planetary Science Letters 86, 287306.CrossRefGoogle Scholar
Crame, J. A., Pirrie, D., Crampton, J. S. & Duane, A. M., 1993. Stratigraphy and regional significance of the Upper Jurassic-Lower Cretaceous Byers Group, Livingston Island, Antarctica. Journal of the Geological Society, London 150, 1075–87.Google Scholar
Dalziel, I. W. D., 1982. The early (pre-Middle Jurassic) history of the Scotia arc region: a review and progress report. In Antarctic Geoscience (ed. Craddock, C.), pp. 111–26. Madison: University of Wisconsin Press.Google Scholar
Davies, T. G., 1984. The geology of part of northern Palmer Land. British Antarctic Survey Scientific Report 103. 146.Google Scholar
Dewar, G. J., 1970. The geology of Adelaide Island. British Antarctic Survey Scientific Report 57, 166.Google Scholar
Doubleday, P. A., Macdonald, D. I. M. & Nell, P. A. R., 1993. Sedimentology and structure of the trench-slope to fore-arc basin transition in the Mesozoic of Alexander Island, Antarctica. Geological Magazine 130, 737–54.CrossRefGoogle Scholar
Farquharson, G. W., 1984. Late Mesozoic, non-marine conglomeratic sequences of northern Antarctic Peninsula (the Botany Bay Group). British Antarctic Survey Bulletin 65, 132.Google Scholar
Fleet, M., 1968. The geology of the Oscar II Coast, Graham Land. British Antarctic Survey Scientific Reports 59, 146.Google Scholar
Fleming, E. A. & Thomson, J. W., (compilers) 1979. Northern Graham Land and South Shetland Islands. Geological Map, 1:500000, BAS 500G series Sheet 2. Cambridge: British Antarctic Survey.Google Scholar
Garrett, S. W., 1990. Interpretation of reconnaissance gravity and aeromagnetic surveys of the Antarctic Peninsula. Journal of Geophysical Research 95, 6759–77.CrossRefGoogle Scholar
Glazner, A. F., 1991. Plutonism, oblique subduction, and continental growth: an example from the Mesozoic of California. Geology 19, 784–6.Google Scholar
Gledhill, A., Rex, D. C. & Tanner, P. W. G., 1982. Rb—Sr and K—Ar geochronology of rocks from the Antarctic Peninsula between Anvers Island and Marguerite Bay. In Antarctic Geoscience (ed. Craddock, C.), pp. 315–23. Madison: University of Wisconsin Press.Google Scholar
Grocott, J., Brown, M., Dallmeyer, R. D., Taylor, G. K. & Treloar, P. J., 1994. Mechanisms of continental growth in extensional arcs: an example from the Andean plateboundary zone. Geology 22, 391–4.2.3.CO;2>CrossRefGoogle Scholar
Grunow, A. M., 1993. New paleomagnetic data from the Antarctic Peninsula and their tectonic implications. Journal of Geophysical Research 98, 13815–33.CrossRefGoogle Scholar
Hamer, R. D. & Hyden, G., 1984. The geochemistry and age of the Danger Islands pluton, Antarctic Peninsula. British Antarctic Survey Bulletin 64, 119.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G. & Smith, D. G., 1990. A Geological Time Scale. Cambridge: Cambridge University Press. 263 pp.Google Scholar
Harrison, S. M. & Loske, W. P., 1988. Early Palaeozoic U—Pb isotopic age for an orthogneiss from north-western Palmer Land, Antarctic Peninsula. British Antarctic Survey Bulletin 81, 1118.Google Scholar
Harrison, S. M. & Piercy, B. A., 1991. Basement gneisses in north-western Palmer Land: further evidence for pre-Mesozoic rocks in Lesser Antarctica. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. and Thomson, J. W.), pp. 341–4. Cambridge: Cambridge University Press.Google Scholar
Hawkesworth, C. & Clarke, C., 1994. Partial melting in the lower crust: new constraints on crustal contamination processes in the central Andes. In Tectonics of the Central Andes (eds Reutter, K.-J., Scheuber, E. and Wigger, P. J.), pp. 93101. Berlin: Springer-Verlag.Google Scholar
Hole, M. J., Pankhurst, R. J. & Saunders, A. D., 1991. Geochemical evolution of the Antarctic Peninsula magmatic arc: the importance of mantle-crust interactions during granitoid genesis. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. and Thomson, J. W.), pp. 369–74. Cambridge: Cambridge University Press.Google Scholar
Hooper, P. R., 1966. The dykes of Anvers Island and adjacent islands. British Antarctic Survey Bulletin 9, 7585.Google Scholar
Hyndman, D. W., 1983. The Idaho batholith and associate plutons, Idaho and western Montana. In Circum-Pacific Plutonic Terranes (ed. Roddick, J. A.), pp. 213–40. Geological Society of America Memoir no. 159.CrossRefGoogle Scholar
Ineson, J. R., 1989. Coarse-grained submarine fan and slope apron deposits in a Cretaceous back-arc basin, Antarctica. Sedimentology 36, 793819.Google Scholar
Kellogg, K. S., 1980. Paleomagnetic evidence for oroclinal bending of the southern Antarctic Peninsula. Geological Society of America Bulletin, Part I 91, 414–20.Google Scholar
Larter, R. D. & Barker, P. F., 1991. Effects of ridge crest-trench interaction on Antarctic—Phoenix spreading: forces on a young subducting plate. Journal of Geophysical Research 96, 19583–607.Google Scholar
Laudon, T. S., 1991. Petrology of sedimentary rocks from the English Coast, eastern Ellsworth Land. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. and Thomson, J. W.), pp. 455–60. Cambridge: Cambridge University Press.Google Scholar
Leat, P. T. & Scarrow, J. H., 1994. Central volcanoes as sources for the Antarctic Peninsula Volcanic Group. Antarctic Science 6, 365–74.CrossRefGoogle Scholar
Leat, P. T., Storey, B. C. & Pankhurst, R. J., 1993. Geochemistry of Palaeozoic-Mesozoic Pacific rim orogenic magmatism, Thurston Island area, West Antarctica. Antarctic Science 5, 281–96.Google Scholar
Le Maitre, R. W., (ed.) 1989. A Classification of Igneous Rocks and Glossary of Terms. Oxford: Blackwell Scientific Publications. 193 pp.Google Scholar
Macdonald, D. I. M. & Butterworth, P. J., 1990. The stratigraphy, setting and hydrocarbon potential of the Mesozoic sedimentary basins of the Antarctic Peninsula. In Antarctica as an Exploration Frontier (ed. John, B. St.), pp. 101–25. American Association of Petroleum Geologists, Studies in Geology, no. 31.Google Scholar
Matthews, D. W., 1983. The Geology of Pourquoi Pas Island, northern Marguerite Bay, Graham Land. British Antarctic Survey Bulletin 52, 120.Google Scholar
Meneilly, A. W., 1988. Reversed fault step at Engle Peaks, Antarctic Peninsula. Journal of Structural Geology 10, 393403.Google Scholar
Meneilly, A. W., Harrison, S. M., Piercy, B. A. & Storey, B. C., 1987. Structural evolution of the magmatic arc in northern Palmer Land, Antarctic Peninsula. In Gondwana Six: Structure, Tectonics and Geophysics. (ed. McKenzie, G. D.), pp. 209–19. Geophysical Monograph 40. Washington, DC: American Geophysical Union.Google Scholar
Millar, I. L., Milne, A. J. & Whitham, A. G., 1990. Implications of Sm—Nd garnet ages for the stratigraphy of northern Graham Land. Zentralblatt für Geologie und Paläontologie 1, 97104.Google Scholar
Milne, A. J., 1991. Mid-Palaeozoic magmatism along part of the Antarctic Peninsula segment of the Pacific margin of Gondwana. In Gondwana Seven Proceedings (eds Ulbrich, H. and Rocha, Campos A. C.) pp. 702–14. S£o Paulo: Universidade de S£ao Paulo.Google Scholar
Milne, A. J. & Millar, I. L., 1989. The significance of mid-Palaeozoic basement in Graham Land, Antarctic Peninsula. Journal of the Geological Society, London 146, 207–10.CrossRefGoogle Scholar
Pankhurst, R. J., 1982. Rb—Sr geochronology of Graham Land, Antarctica. Journal of the Geological Society, London 139, 701–11.CrossRefGoogle Scholar
Pankhurst, R. J., 1983. Rb—Sr constraints on the ages of basement rocks of the Antarctic Peninsula. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. and Jago, J. B.), pp. 367–71. Canberra: Australian Academy of Science.Google Scholar
Pankhurst, R. J., 1990. The Paleozoic and Andean magmatic arcs of West Antarctica and southern America. Geological Society of America Special Paper 241, 17.CrossRefGoogle Scholar
Pankhurst, R. J., Hervé, F., Rojas, L. & Cembrano, J., 1992. Magmatism and tectonics in continental Chiloé, Chile (42°–42°30′S). Tectonics 205, 283–94.Google Scholar
Pankhurst, R. J., Hole, M. J. & Brook, M., 1988. Isotope evidence for the origin of Andean Granites. Transactions of the Royal Society of Edinburgh: Earth Sciences 79, 123–33.CrossRefGoogle Scholar
Pankhurst, R. J., Millar, I. L., Grunow, A. M. & Storey, B. C., 1993. The Pre-Cenozoic magmatic history of the Thurston Island crustal block, West Antarctica. Journal of Geophysical Research 98, 11835–49.CrossRefGoogle Scholar
Pankhurst, R. J. & Rowley, P. D., 1991. Rb—Sr study of Cretaceous plutons from southern Antarctic Peninsula and eastern Ellsworth Land, Antarctica. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. and Thomson, J. W.), pp. 387–94. Cambridge: Cambridge University Press.Google Scholar
Pitcher, W. S., 1993. The Nature and Origin of Granite. Glasgow: Blackie Academic and Professional. 321. pp.Google Scholar
Pitcher, W. S., Atherton, M. P., Cobbing, E. J. & Beckinsale, R. D. (eds) 1985. Magmatism at a Plate Edge. Glasgow: Blackie, 328 pp.CrossRefGoogle Scholar
Rees, P. M., 1993. Revised interpretations of Mesozoic palaeogeography and volcanic arc evolution in the northern Antarctic Peninsula region. Antarctic Science 5, 7785.Google Scholar
Rex, D. C., 1976. Geochronology in relation to the stratigraphy of the Antarctic Peninsula. British Antarctic Survey Bulletin 43, 4958.Google Scholar
Rex, D. C. & Baker, P. E., 1973. Age and petrology of the Cornwallis Island granodiorite. British Antarctic Survey Bulletin 32, 5561.Google Scholar
Ringe, M. J., 1991. Volcanism on Brabant Island, Antarctica. In Geological Evolution of Antarctica (eds Thomson, M. R. A., Crame, J. A. and Thomson, J. W.), pp. 515–19. Cambridge: Cambridge University Press.Google Scholar
Rowley, P. D., Kellogg, K. S., Williams, P. L. & Thomson, J. W., (compilers) 1992. Southern Palmer Land and eastern Ellsworth Land. Geological Map, 1:500000, BAS 500G series Sheet 6. Cambridge: British Antarctic Survey.Google Scholar
Rowley, P. D., Vennum, W. R., Kellogg, K. S., Laudon, T. S., Carrara, P. E., Boyles, J. M. & Thomson, M. R. A., 1983. Geology and plate tectonic setting of the Orville coast and eastern Ellsworth Land, Antarctica. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. and Jago, J. B.), pp. 245–50. Canberra: Australian Academy of Science.Google Scholar
Rushmer, T., 1991. Partial melting of two amphibolites: contrasting experimental results under fluid-absent conditions. Contributions to Mineralogy and Petrology 107, 4159.Google Scholar
Rushmer, T., 1993. Experimental high-pressure granulites: some applications to natural mafic xenolith suites and Archean granulite terranes. Geology 21, 411–14.Google Scholar
Saunders, A. D., Tarney, J. & Weaver, S. D., 1980. Transverse geochemical variations across the Antarctic Peninsula: implications for the genesis of calc-alkaline magmas. Earth and Planetary Science Letters 46, 344–60.CrossRefGoogle Scholar
Saunders, A. D., Weaver, S. D. & Tarney, J., 1982. The pattern of Antarctic Peninsula plutonism. In Antarctic Geoscience (ed. Craddock, C.), pp. 305–14. Madison: University of Wisconsin Press.Google Scholar
Sheraton, J. W., Thomson, J. W. & Collerson, K. D., 1987. Mafic dyke swarms of Antarctica. In Mafic Dyke Swarms (eds Halls, H. C. and Fahrig, W. R.), pp. 419–32. Geological Association of Canada Special Paper no. 34.Google Scholar
Silver, L. T. & Chappell, B. W., 1988. The Peninsular Ranges batholith: an insight into the evolution of the Cordilleran batholiths of southwestern North America. Transactions of the Royal Society of Edinburgh: Earth Science 79, 105–21.CrossRefGoogle Scholar
Singleton, D. G., 1980. The geology of the central Black Coast, Palmer Land. British Antarctic Survey Scientific Report 102, 150.Google Scholar
Smellie, J. L., 1981. A complete arc-trench system recognized in Gondwana sequences of the Antarctic Peninsula region. Geological Magazine 118, 139–59.Google Scholar
Smellie, J. L., 1987. Sandstone detrital modes and basinal setting of the Trinity Peninsula Group, northern Graham Land, Antarctic Peninsula: a preliminary survey. In Gondwana Six: Structure, Tectonics and Geophysics (ed. McKenzie, G. D.), pp. 199207. Geophysical Monograph 40. Washington DC: American Geophysical Union.Google Scholar
Smellie, J. L., 1991. Middle-Late Jurassic volcanism on Jason Peninsula, and its relationship to the break-up of Gondwana. In Gondwana Seven Proceedings (ed. Ulbrich, H. and Rocha, Campos A. C.), pp. 685–99. São Paulo: Universidade de São Paulo.Google Scholar
Smellie, J. L. & Millar, I. L., 1995. New K—Ar isotopic ages of schists from Nordenskjöld Coast, Antarctic Peninsula: oldest part of the Trinity Peninsula Group? Antarctic Science 7, 191196.CrossRefGoogle Scholar
Smellie, J. L., Pankhurst, R. J., Hole, M. J. & Thomson, J. W., 1988. Age, distribution and eruptive conditions of late Cenozoic alkaline volcanism in the Antarctic Peninsula and eastern Ellsworth Land: review. British Antarctic Survey Bulletin 80, 2149.Google Scholar
Smellie, J. L., Pankhurst, R. J., Thomson, M. R. A. & Davies, R. E. S., 1984. The geology of the South Shetland Islands: vi. stratigraphy, geochemistry and evolution. British Antarctic Survey Scientific Report 87, 185.Google Scholar
Smellie, J. L. & Thomson, J. W., 1985. Geological investigations on Rugged Island, South Shetland Islands. British Antarctic Survey Bulletin 68, 101–5.Google Scholar
Stanek, K.-P., 1987. Beitrag zur geologie der sudlichen Lassiter Coast und der östlichen Orville Coast (Antarctische Halbinsel). Freiberger Forschungshefte, Reihe C 412, 550.Google Scholar
Storey, B. C. & Alabaster, T., 1991. Tectonomagmatic controls on Gondwana break-up models: evidence from the proto-Pacific margin of Antarctica. Tectonics 10, 1274–88.Google Scholar
Storey, B. C., Alabaster, T., Hole, M. J., Pankhurst, R. J. & Wever, H. E., 1992. Role of subduction-plate boundary forces during the initial stages of Gondwana break-up: evidence from the proto-Pacific margin of Antarctica. In Magmatism and the Causes of Continental Break-up (ed. Storey, B. C., Alabaster, T. and Pankhurst, R. J.), pp. 149–63. Geological Society, London, Special Publication no. 68.Google Scholar
Storey, B. C. & Garrett, S. W., 1985. Crustal growth of the Antarctic Peninsula by accretion, magmatism and extension. Geological Magazine 122, 514.Google Scholar
Storey, B. C. & Nell, P. A. R., 1988. Role of strike-slip faulting in the tectonic evolution of the Antarctic Peninsula. Journal of the Geological Society, London 145, 333–7.Google Scholar
Storey, B. C., Thomson, M. R. A. & Meneilly, A. W., 1987. The Gondwanian orogeny within the Antarctic Peninsula: a discussion. In Gondwana Six: Structure, Tectonics and Geophysics (ed. McKenzie, G. D.), pp. 191–8. Geophysical Monograph 40. Washington DC: American Geophysical Union.Google Scholar
Suárez, M., 1976. Plate-tectonic model for southern Antarctic Peninsula and its relation to southern Andes. Geology 4, 211–14.Google Scholar
Thomson, J. W. & Harris, J., (Compilers) 1981. Southern Graham Land. Geological Map, 1:500000, BAS 500G series Sheet 3. Cambridge: British Antarctic Survey.Google Scholar
Thomson, J. W., Harris, J., Rowley, P. D., Kellogg, K. S., Boyer, S. J., Vennum, W. R., Waitt, R. B. & Kamenev, E. N., (Compilers) 1982. Northern Palmer Land. Geological Map, 1:500000, BAS 500G series Sheet 5. Cambridge: British Antarctic Survey.Google Scholar
Thomson, M. R. A., 1982. Mesozoic palaeogeography of West Antarctica. In Antarctic Geoscience (ed. Craddock, C.), pp. 331–7. Madison: University of Wisconsin Press.Google Scholar
Thomson, M. R. A., 1983. Late Jurassic ammonites from the Orville Coast, Antarctica. In Antarctic Earth Science (eds Oliver, R. L., James, P. R. and Jago, J. B.), pp. 315–19. Canberra: Australian Academy of Science.Google Scholar
Thomson, M. R. A. & Pankhurst, R. J., 1983. Age of post-Gondwanian volcanism in the Antarctic Peninsula region. In Antarctic Earth Science (eds Oliver, R. L. James, P. R. and Jago, J. B.), pp. 328–33. Canberra: Australian Academy of Science.Google Scholar
Thomson, M. R. A., Pankhurst, P. J. & Clarkson, P. D., 1983. The Antarctic Peninsula — a late Mesozoic—Cenozoic arc (review). In Antarctic Earth Science (eds Oliver, R. L. James, P. R. and Jago, J. B.), pp. 289–94. Canberra: Australian Academy of Science.Google Scholar
Vaughan, A. P. M. & Millar, I. L., 1995. Early Cretaceous magmatism during extensional deformation within the Antarctic Peninsula magmatic arc. Journal of South American Earth Sciences (in press).Google Scholar
Vennum, W. R. & Rowley, P. D., 1986. Reconnaissance geochemistry of the Lassiter Coast Intrusive suite, southern Antarctic Peninsula. Geological Society of America Bulletin 97, 1521–33.Google Scholar
Watts, D. R., Watts, G. C. & Bramall, A. M., 1984. Cretaceous and early Tertiary paleomagnetic results from the Antarctic Peninsula. Tectonics, 3, 333–46.Google Scholar
Weaver, S. D., Saunders, A. D. & Tarney, J., 1982. Mesozoic volcanism in the South Shetland Islands and the Antarctic Peninsula: geochemical nature and plate tectonic significance. In Antarctic Geoscience (ed. Craddock, C.), pp. 263–73. Madison: University of Wisconsin Press.Google Scholar
Weaver, S. G., Bruce, R., Nelson, E. P., Brueckner, H. K. & Lehurray, A. P., 1990. The Patagonian batholith at 48 °S latitude, Chile; geochemical and isotopic variations. Geological Society of America Special Paper 241, 3350.CrossRefGoogle Scholar
West, S. M., 1974. The geology of the Danco Coast, Graham Land. British Antarctic Survey Scientific Report 84, 158.Google Scholar
Wever, H. E., Millar, I. L. & Pankhurst, R. J., 1994. Geochronology and radiogenic isotope geology of Mesozoic rocks from eastern Palmer Land, Antarctic Peninsula: crustal anatexis in arc-related granitoid genesis. Journal of South American Earth Sciences 7, 6983.Google Scholar
Wever, H. E., Storey, B. C. & Leat, P., 1995. Peraluminous granites in NE Palmer Land, Antarctic Peninsula: early Mesozoic crustal melting in a magmatic arc. Journal of the Geological Society, London 152, 8596.Google Scholar
Whitham, A. G. & Storey, B. C., 1989. Late Jurassic-Early Cretaceous strike-slip deformation in the Nordenskjóld Formation of Graham Land. Antarctic Science 1, 269–78.Google Scholar
Willan, C. F. H. & Moyes, A. B., (compilers) 1994. Geological map of Adelaide Island to Foyn Coast. Geological Map, 1:250000, BAS GEOMAP series Sheet 3. Cambridge: British Antarctic Survey.Google Scholar
Willan, R. C. R., Pankhurst, R. J. & Hervé, F., 1994. A probable Early Triassic age for the Miers Bluff Formation, Livingston Island, South Shetland Islands. Antarctic Science 6, 401–8.CrossRefGoogle Scholar