Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T03:03:34.621Z Has data issue: false hasContentIssue false

New U–Pb constraints identify the end-Guadalupian and possibly end-Lopingian extinction events conceivably preserved in the passive margin of North America: implication for regional tectonics

Published online by Cambridge University Press:  25 October 2016

V. I. DAVYDOV*
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA Kazan Federal University, 18 Kremlyovskaya St., Kazan, Republic of Tatarstan 420008, Russia Department of Earth & Environment, Florida International University, 11200 S.W. 8th Street, Miami, FL 33199, USA
J. L. CROWLEY
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
M. D. SCHMITZ
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
W. S. SNYDER
Affiliation:
Department of Geosciences, Boise State University, 1910 University Drive, Boise, ID 83725, USA
*
Author for correspondence: [email protected], [email protected]

Abstract

The discovery and dating of a volcanic ash bed within the upper Phosphoria Formation in SE Idaho, USA, is reported. The ash occurs 11 m below the top of the phosphatic Meade Peak Member and yielded a 206Pb/238U date of 260.57 ± 0.07 / 0.14 / 0.31 Ma, i.e. latest Capitanian, Guadalupian. The stratigraphic position of this ash near the top of the Meade Peak phosphatic Member of Phosphoria Formation indicates plausible completeness of the sedimentation within the Guadalupian–Lopingian and probably at the Permo-Triassic (P-T) transitions. The new radiometric age reveals that the regional biostratigraphy and palaeontology of Phosphoria and Park City formations requires serious reconsideration, particularly in cool water conodonts, bryozoans and brachiopods. The new age proposes that the Guadalupian–Lopingian boundary (GLB) coincides with the Meade Peak – Rex contact and consequently with the end-Guadalupian extinction event. The lack of a major unconformity at the P-T transition suggests that the effects of the Sonoma orogeny were not as extensive as has been assumed.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Algeo, T., Henderson, C. M., Ellwood, B. B., Rowe, H., Elswick, E., Bates, S., Lyons, T. W., Hower, J. C., Smith, C., Maynard, B., Hays, L. E., Summons, R. E., Fulton, J. & Freeman, K. H. 2012. Evidence for a diachronous Late Permian marine crisis from the Canadian Arctic region. Geological Society of America Bulletin 124, 1424–48.Google Scholar
Algeo, T. J. & Twitchett, R. J. 2010. Anomalous Early Triassic sediment fluxes due to elevated weathering rates and their biological consequences. Geology (Boulder) 38, 1023–6.Google Scholar
Alvarez, W. & O'Connor, D. 2002. Permian-Triassic boundary in the Southwestern United States: hiatus or continuity? In Catastrophic Events and Mass Extinctions: Impacts and Beyond (eds Koeberl, G. & MacLeod, K. G.), pp. 385–93. Geological Society of America Special Paper 356.Google Scholar
Baud, A., Richoz, S., Beauchamp, B., Cordey, F., Grasby, S., Henderson, C., Krystyn, L. & Nicora, A. 2012. The Buday'ah Formation, Sultanate of Oman: a Middle Permian to Early Triassic oceanic record of the Neotethys and the late Induan microsphere bloom. Journal of Asian Earth Sciences 43, 130–44.CrossRefGoogle Scholar
Blakey, R. C. 2013. Using paleogeographic maps to portray Phanerozoic geologic and paleotectonic history of western North America. AAPG Bulletin 97, 146.Google Scholar
Collinson, J. W., Kendall, G. St. C. & Marcantel, J. B. 1976. Permian–Triassic boundary in eastern Nevada and west-central Utah. Geological Society of America Bulletin 87, 821–4.2.0.CO;2>CrossRefGoogle Scholar
Condon, D., Schoene, B., McLean, N. M., Bowring, S. & Parrish, R. 2015. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta 164, 464–80.Google Scholar
Crowley, J. L., Schoene, B. & Bowring, S. A. 2007. U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–6.Google Scholar
Davydov, V. I. 2014. Warm water benthic foraminifera document the Pennsylvanian–Permian warming and cooling events — the record from the Western Pangea tropical shelves. Palaeogeography, Palaeoclimatology and Palaeogeography 414, 284–95.Google Scholar
Davydov, V. I., Biakov, A. S., Isbell, J. L., Crowley, J. L., Schmitz, M. D. & Vedernikov, I. L. 2015. Middle Permian U–Pb zircon ages of the “glacial” deposits of the Atkan Formation, Ayan-Yuryakh anticlinorium, Magadan province, NE Russia: their significance for global climatic interpretations. Gondwana Research, doi: 10.1016/j.gr.2015.10.014.Google Scholar
Denison, R. E. & Peryt, T. M. 2009. Strontium isotopes in the Zechstein (Upper Permian) anhydrites of Poland: evidence of varied meteoric contributions to marine brines. Geological Quarterly 53, 159–66.Google Scholar
Dott, R. H. 1961. Permo-Triassic diastrophism in the western Cordilleran region. American Journal of Science 259, 561–82.CrossRefGoogle Scholar
Gerstenberger, H. & Haase, G., 1997. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology 136, 309–12.Google Scholar
Hein, J. R., Perkins, R. B. & McIntyre, B. R. 2004. Evolution of thought concerning the origin of the Phosphoria Formation, Western US Phosphate Field. In Life Cycle of the Phosphoria Formation: From Deposition to the Post-Mining Environment (ed. Hein, J. R.), pp. 1942. Handbook of Exploration and Environmental Geochemistry no. 8.Google Scholar
Henderson, C. M., Davydov, V. I. & Wardlaw, B. R. 2012. The Permian Period . In The Geological Time Scale (eds. Gradstein, F., Ogg, J., Schmitz, M. D. & Ogg, G.), pp. 652–79. Amsterdam: Elsevier.Google Scholar
Henderson, C. M. & Mei, S. 2007. Geographical clines in Permian and lower Triassic gondolellids and its role in taxonomy. Palaeoworld 16, 190201.CrossRefGoogle Scholar
Hofmann, R., Hautmann, M. & Bucher, H. 2013. A new paleoecological look at the Dinwoody Formation (Lower Triassic, Western USA): intrinsic versus extrinsic controls on ecosystem recovery after the end-Permian mass extinction. Journal of Paleontology 87, 854–80.CrossRefGoogle Scholar
Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. 1971. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Review C 4, 1889–906.Google Scholar
Kozur, H. 1975. Beiträge zur Conodontenfauna des Perm. Geologische-Paläontologische Mitteilungen Innsbruck 5, 144.Google Scholar
Ketner, K. B. 2008. The Inskip Formation, the Harmony Formation, and the Havallah Sequence of northwestern Nevada: an interrelated Paleozoic assemblage in the home of the Sonoma Orogeny. US Geological Survey Professional Paper 1757, 121.Google Scholar
Kozur, H., Brandner, R., Resch, W. & Mostler, H. 1995. Permian conodont zonation and its importance for the Permian stratigraphic standard scale. Geologisch-Paläontologische Mitteilungen Innsbruck 20, 165205.Google Scholar
Krogh, T. E. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta 37, 485–94.CrossRefGoogle Scholar
Lee, M.-Y., Chen, C.-H., Wei, K.-Y., Iizuka, Y. & Carey, S. 2004. First Toba supereruption revival. Geology (Boulder) 32, 61–4.Google Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00. Berkeley, CA: Berkeley Geochronology Center.Google Scholar
McLean, N. M., Condon, D., Schoene, B. & Bowring, S. 2015. Calibration of the EARTHTIME 235U-233U-205Pb-(202Pb) tracer for high-precision U/Pb geochronology: Part II, evaluating analytical and systematic uncertainties. Geochimica et Cosmochimica Acta 164, 481501.CrossRefGoogle Scholar
Mattinson, J. M. 2005. Zircon U-Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology 220, 4766.Google Scholar
Miller, M. M. 1989. Intra-arc sedimentation and tectonism: late Paleozoic evolution of the eastern Klamath Terrane, California. Geological Society of America Bulletin 101, 170–87.Google Scholar
Mytton, J. W., Morgan, W. A. & Wardlaw, B. R. 1983. Stratigraphic relations of Permian units, Cassia Mountains, Idaho. In Tectonic and Stratigraphic Studies in the Eastern Great Basin (eds Miller, D. M., Todd, V. R. & Howard, K. A.), pp. 281303. Geological Society of America Memoir 157.CrossRefGoogle Scholar
Northrup, C. J. & Snyder, W. S. 2000. Significance of the Sonoma Orogeny, Western U.S.: what, where, and when? Geological Society of Nevada Symposium 2000, Program with Abstracts, 6667.Google Scholar
Ota, A., Isozaki, Y., Shi, G. R., Campi, M. J. & Shen, S. 2006. Fusuline biotic turnover across the Guadalupian-Lopingian (Middle-Upper Permian) boundary in mid-oceanic carbonate buildups: biostratigraphy of accreted limestone in Japan. Journal of Asian Earth Sciences 26, 353–68.CrossRefGoogle Scholar
Paull, R. K. 1980. Conodont biostratigraphy of the Lower Triassic Dinwoody Formation in northwestern Utah, northeastern Nevada, and southeastern Idaho. Ph.D. thesis, University of Wisconsin, Madison. Published thesis.Google Scholar
Paull, R. K. & Paull, R. A. 1986. Epilogue for the Permian in the western Cordillera: a retrospective view from the Triassic. Contributions to Geology 24, 243–52.Google Scholar
Paull, R. K. & Paull, R. A. 1994 a. Lower Triassic transgressive-regressive sequences in the Rocky Mountains, eastern Great Basin, and Colorado Plateau, USA. Sedimentary Geology 93, 181–91.CrossRefGoogle Scholar
Paull, R. K. & Paull, R. A., 1994 b. Hindeodus parvus: proposed index fossil for the Permian-Triassic boundary. Lethaia 27, 271–2.Google Scholar
Perkins, R. B., Piper, D. Z. & Hein, J. R. 2004. The Meade Peak Member of the Phosphoria Formation: temporal and spatial variations in sediment geochemistry. In Life Cycle of the Phosphoria Formation: From Deposition to the Post-Mining Environment (ed. Hein, J. R.), pp. 73110. Handbook of Exploration and Environmental Geochemistry no. 8.CrossRefGoogle Scholar
Poole, F. G. & Wardlaw, B. R. 1978. Candelaria (Triassic) and Diablo (Permian) formations in southern Toquima Range, central Nevada. In Mesozoic Paleogeography of the western United States (eds Howell, D. G. & McDougall, K.). Los Angeles: Society of Economic Paleontologists and Mineralogists, Pacific Section, pp. 271–6. Pacific Coast Paleogeography Symposium 2.Google Scholar
Saltzman, M. R. & Sedlacek, A. R. C. 2013. Chemostratigraphy indicates a relatively complete Late Permian to Early Triassic sequence in the Western United States. Geology (Boulder) 41, 399402.CrossRefGoogle Scholar
Schmitz, M. D. & Schoene, B. 2007. Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using (super 205) Pb- (super 235) U- ((super 233) U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems 8, 120.Google Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363, 1560.Google Scholar
Silberling, N. J. & Roberts, R. J. 1962. Pre-Tertiary stratigraphy and structure of northwestern Nevada. Geological Society of America Special Paper 58, 156.Google Scholar
Stevens, C. H. 1991. Permian paleogeography of the Western United States. In Paleozoic Paleogeography of the Western United States – II (eds Cooper, J. D. & Stevens, C. H.). Los Angeles: Society of Economic Paleontologists and Mineralogists, Pacific Section, pp. 149–66. Field Trip Guidebook 67.Google Scholar
Stewart, J. H., Poole, F. G. & Wilson, R. F., 1972. Stratigraphy and origin of the Chinle Formation and related Upper Triassic strata in the Colorado Plateau region: US Geological Survey Professional Paper 690, 1336.Google Scholar
Szurlies, M. 2013. Late Permian (Zechstein) magnetostratigraphy in Western and Central Europe. In Palaeozoic Climate Cycles: Their Evolutionary and Sedimentological Impact (eds Gasiewicz, A. & Slowakiewicz, M.), pp. 7385. Geological Society of London, Special Publication 376.Google Scholar
Tomlinson, A. J., Miller, E. L., Holdsworth, B. K., Whiteford, W. B., Snyder, W. S. & Brueckner, H. K. 1987. Structure of the Havallah Sequence, Golconda Allochthon, Nevada: evidence for prolonged evolution in an accretionary prism: discussion and reply. Geological Society of America Bulletin 98, 615–17.Google Scholar
Wardlaw, B. R. 1977. The biostratigraphy and paleoecology of the Gerster Limestone (Upper Permian) in Nevada and Utah. US Geological Survey Open File Report 77–470, 1124.Google Scholar
Wardlaw, B. R. 2001. Smooth Gondolellids from the Kungurian and Guadalupian of the Western U.S. Permophiles 42, 20–1.Google Scholar
Wardlaw, B. R. 2003. Global Guadalupian (Middle Permian) conodont correlation and distribution. Permophiles 38, 22–4.Google Scholar
Wardlaw, B. R. & Collinson, J. W. 1979. Youngest Permian conodont faunas from the Great Basin and Rocky Mountain regions. In Conodont Biostratigraphy of the Great Basin and Rocky Mountains (eds Sandberg, C. & Clark, D. L.), pp. 151–63. Brigham Young University, Geology Studies 26.Google Scholar
Wardlaw, B. R. & Collinson, J. W. 1986. Paleontology and deposition of the Phosphoria Formation. Contributions to Geology 24, 107–42.Google Scholar
Wardlaw, B. R., Collinson, J. W. & Maughan, E. K. 1979. The Murdock Mountain Formation: a new unit of the Permian Park City Group. US Geological Survey Professional Paper 1163, 58.Google Scholar
Wardlaw, B. R., Snyder, W. S., Spinosa, C. & Gallegos, D. M. 1995. Permian of the Western United States. In Permian of Northern Pangaea (eds Scholle, P. A., Peryt, T. M. & Ulmer-Scholle, D. S.), pp. 2340. Berlin: Springer-Verlag.Google Scholar
Whalen, M. T. 1996. Facies architecture of the Permian Park City Formation, Utah and Wyoming: implications for the paleogeography and oceanographic setting of western Pangea. In Paleozoic Systems of the Rocky Mountain Region (eds Longman, M. W. & Sonnenfeld, M. D.), pp. 355378. Denver, CO: Rocky Mountain Section, Society for Sedimentary Geology.Google Scholar
Wignall, P. B., Sun, Y., Bond, D. P. G., Izon, G., Newton, R. J., Vedrine, S., Widdowson, M., Ali, J. R., Lai, X., Jiang, H., Cope, H. & Bottrell, S. H. 2009. Volcanism, mass extinction, and carbon isotope fluctuations in the Middle Permian of China. Science 324, 1179–82.Google Scholar