Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T13:14:36.714Z Has data issue: false hasContentIssue false

Mineralogy, geochemistry and petrogenesis of igneous inclusions within three inactive diapirs, Zagros belt, Shahre-kord, Iran

Published online by Cambridge University Press:  05 July 2012

SEDIGHEH TAGHIPOUR*
Affiliation:
Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran Department of Geology, College of Sciences, University of Tehran, Tehran, Iran
MAHMOUD KHALILI
Affiliation:
Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
MOHAMMAD ALI MACKIZADEH
Affiliation:
Department of Geology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
ALI KANANIAN
Affiliation:
Department of Geology, College of Sciences, University of Tehran, Tehran, Iran
BATOUL TAGHIPOUR
Affiliation:
Department of Earth Sciences, Faculty of Sciences, Shiraz University, Shiraz, Iran
*
Author for correspondence: [email protected]

Abstract

The Kaj-Rostam Abad, Dashtak and Doab diapirs are part of the Precambrian–Cambrian Hormuz series that are rich in igneous inclusions concentrated by dissolution of diapiric salt. They are situated in the Iran–Pakistan salt range and commonly associated with inclusions of basalt, trachyte, andesite, micro-gabbro, gypsum and anhydrite, with lesser amounts of carbonate rocks. The mineral assemblage in these inclusions developed in three stages: (I) magmatic stage (diopside, Ti-augite, kaersutite, plagioclase, apatite, biotite and opaque minerals), (II) late magmatic stage (biotite, quartz, chlorite, albite, calcite, titanite, epidote, actinolite and opaque minerals) and (III) vein mineralization (quartz, chlorite, albite, calcite, garnet, epidote, opaque minerals and actinolite). Clinopyroxene is diopside to Ti-augite. Actinolite, kaersutite, albite and pycnochlorite are constituents of the metasomatic rocks of the area. Chlorite geothermometry yielded a temperature of 330–500 °C for chlorite formation. Clinopyroxene thermobarometry ranges from 960 ≤ T ≤ 1440 °C and 1 ≤ P ≤ 10 kbar. The presence of halite-bearing fluid inclusions in hydrothermal quartz veins with homogenization temperatures between 320 and 350 °C points to strong evidence of hydrothermal events. The salinity of these fluids is 39.8–42.7 wt% NaCl. δ18O data on hydrothermal quartz veins range from 14.89 to 22.09 ‰ (SMOW), indicating that the studied samples were affected by fluids originated from sedimentary-evaporitic rocks. Meteoric water that penetrated the evaporitic rocks likely mixed with late magmatic fluids while subjected to magmatic heat, when buried to depths of several kilometres by the Phanerozoic cover sequence. Whole-rock geochemistry data for the studied rocks emphasize their alkaline to sub-alkaline affinities, in a transitional magmatic series.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmadzadeh Heravi, M. A., Houshmandzadeh, A. & Nabavi, M. H. 1990. The role of diapirism from the standpoint of hydrocarbon reserves in south west Iran. In Proceedings of Symposium on Diapirism, with Special Reference to Iran, vol. 1, pp. 120. Tehran: Geological Survey of Iran.Google Scholar
Alavi, M. 1996. Geological Map of Broojen, 1: 250 000. Tehran: Geological Survey of Iran.Google Scholar
Avoki, K. & Shiba, I. 1973. Pyroxene from lherzolite inclusions of Itinomegata, Japan. Lithos 6, 4151.Google Scholar
Bahroudi, A., Koyi, H. A. & Talbot, C. J. 2003. Effect of ductile and frictional décollements on style of extension. Journal of Structural Geology 25, 1401–23.Google Scholar
Beane, R. E. 1983. The magmatic-meteoric transition. Geothermal Resources Council, Special Report 13, 245–53.Google Scholar
Beccaluva, L., Macciotta, G., Piccardo, G. B. & Zeda, O. 1989. Clinopyroxene composition of ophilitic basalts as petrogenetic indicator. Chemical Geology 77, 165–82.Google Scholar
Becker, M. & Le Roex, A. 2006. Geochemistry of South African on and off craton, group II kimberlites: petrogenesis and source region evolution. Journal of Petrology 47, 673703.Google Scholar
Berberian, M. & King, G. C. P. 1981. Towards a palegeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences 18, 210–65.CrossRefGoogle Scholar
Berry, G. P., Nickel, K. G. & Kogarko, L. 1986. Garnet-pyroxene equilibrium in the system CaO-MgO-Al2O3-SiO2 (CMAS): prospects for simplified lherzolite barometry and an eclogite-barometer. Contributions to Mineralogy and Petrology 92, 448–55.Google Scholar
Blanford, W. F. 1872. Notes on the geological formations seen along the coast of Baluchistan and Persia from Carchi to the head of the Persian Gulf and some of the Gulf Islands. Records of the Geological Survey of India 5 (2), 41–5.Google Scholar
Borthewick, J. & Harmon, R. S. 1982. A note regarding ClF3 as an alternative to BrF5 for oxygen isotope analysis. Geochimica et Cosmochimica Acta 46, 1665–8.Google Scholar
Bosak, P., Jaros, J., Spudil, J., Sulovsky, P. & Vaclavek, V. 1998. Salt plugs in the Eastern Zagros, Iran: results of regional geological reconnaissance. GeoLines (Praha) 7, 1172.Google Scholar
Caritas, P., Hutcheon, L. & Walshe, J. L. 1993. Chlorite geothermometry: a review. Clays and Clay Minerals 41, 219–39.Google Scholar
Cathelineu, M. 1988. Cation site occupancy in chlorites and illites as a function of temperature. Clay Minerals 23, 471–85.Google Scholar
Cathelineu, M. & Nieva, D. 1985. A chlorite solution geothermometer, the los Azufers (Mexico) geothermal system. Contributions to Mineralogy and Petrology 91, 235–44.Google Scholar
Clayton, R. N. & Mayeda, T. K. 1963. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotope analysis. Geochimica et Cosmochimica Acta 27, 4352.Google Scholar
Darbas, G. & Nazik, A. 2010. Micropaleontology and paleoecology of the Neogene sediments in the Adana Basin (South of Turkey). Journal of Asian Earth Sciences 39, 136–47.CrossRefGoogle Scholar
Darwishzadeh, A. 1990. The origin of Hormuz salt formations. In Proceedings of Symposium on Diapirism, with Special Reference to Iran, vol. 1, pp. 81108. Tehran: Geological Survey of Iran.Google Scholar
Davoudzadeh, M. 1990. Some dynamic aspects of the salt diapirism in the Southern Iran. Proceedings of Symposium on Diapirism, with Special Reference to Iran, vol. 2, pp. 97108. Tehran: Geological Survey of Iran.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1991. An Introduction to Rock-forming Minerals. London: Longman Group, 528 pp.Google Scholar
Falcon, N. L. 1967. The geology of north-east margin of the Arabian basement shield. Advancement of Science 24, 3142.Google Scholar
Farhoudi, G. 1978. A comparison of Zagros geology to island arcs. Journal of Geology 86, 323–34.Google Scholar
Fedo, C. M., Young, G. M., Nesbitt, H. W. & Hanchar, J. M. 1997. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: evidence from the Paleoproterozoic Serpent Formation, Huronian Supergroup, Canada. Precambrian Research 84, 1736.Google Scholar
Gansser, A. 1960. Uber Schlammvulkane und Salzdome. Naturforschende Gesellschaft in Zürich Vierteljahrsschrift 105, 146.Google Scholar
Harrison, J. V. 1930. The geology of some salt plugs in Laristan (southern Persia). Quarterly Journal of Geological Society of London 86 (4), 463522.Google Scholar
Harry, W. T. 1950. Aluminium replacing silicon in some silicate lattices. Mineralogical Magazine 29, 142–9.Google Scholar
Hastie, A. R. & Kerr, A. C. 2010. Mantle plume or slab window? Physical and geochemical constraints on the origin of the Caribbean oceanic plateau. Earth Science Reviews 98, 283–93.Google Scholar
Hastie, A. R., Kerr, A. C., Mitchell, S. F. & Millar, I. L. 2008. Geochemistry and petrogenesis of Cretaceous oceanic plateau lavas in eastern Jamaica. Lithos 101, 323–43.Google Scholar
Hastie, A. R., Kerr, A. C., Pearce, J. A. & Mitchell, S. F. 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341–57.Google Scholar
Haynes, S. J. & Maquilan, H. 1974. Evolution of the Zagros Suture Zone, southern Iran. Geological Society of America Bulletin 85, 739–44.Google Scholar
Hey, M. H. 1954. A new review of the chlorites. Mineralogical Magazine 30, 277–92.Google Scholar
Huckriede, R., Kursten, L. & Venzluff, H. 1962. Zur Geologie des gebites zwischen Kerman and Sagand (Iran). Geology Jahrober Beih 51, 1179.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2007. Terra infirma: understanding salt tectonics. Earth-Science Reviews 82, 128.Google Scholar
Irvine, T. N. & Baragar, W. K. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8, 523–48.Google Scholar
Jamshidi, K. H., Ghomashi, A. & Haddadan, M. 1996. Geological Map of Ardal, 1: 100 000. Tehran: Geological Survey of Iran.Google Scholar
Jowett, E. C. 1991. Fitting iron and magnesium in the hydrothermal chlorite geothermometer. Geological Association of Canada/Mineralogical Association of Canada/Society of Economic Geologists Joint Annual Meeting (Toronto), Program with Abstracts 16, A62.Google Scholar
Kent, P. E. 1958. Recent studies of south Persian salt plugs. American Association of Petroleum Geologists Bulletin 42 (12), 2951–79.Google Scholar
Kent, P. E. 1970. The emergent Hormuz salt plugs of Southern Iran. Journal of Petrology Geology 2, 117–44.Google Scholar
Kinsman, D. G. 1966. Gypsum and anhydrite of recent age, Trucial Coast, Persian Gulf. In Proceedings of the Second Salt Symposium, vol. 1, pp. 302–26. Cleveland: Northern Ohio Geological Society.Google Scholar
Leake, B. E., Wolley, A. R., Arps, C. E. S., Birch, W. D., Gilbert, M. C., Grice, J. D., Hawthorne, F. C., Kato, A., Kisch, H. J., Krivovichev, V. G., Linthout, K., Laird, J., Mandarino, J. A., Maresch, W. V., Nickel, E. H., Rock, N. M. S., Schumacher, J. C., Smith, D. C., Stephenson, N. C. N., Ungaretti, L., Whittaker, E. J. W. & Youzhi, G. 1997. Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and mineral names. The Canadian Mineralogist 35, 219–37.Google Scholar
Le Bas, M. J. 1962. The role of aluminum in igneous clinopyroxene with relation to their parentage. American Journal of Science 260, 267–88.Google Scholar
Le Roex, A. P., Bell, D. R. & Davis, P. 2003. Petrogenesis of group I kimberlites from Kimberly, South Africa, evidence from bulk-rock geochemistry. Journal of Petrology 44, 2201–86.Google Scholar
Lindsley, D. H. & Andersen, D. J. 1983. A two-pyroxene thermometer. Journal of Geophysical Research 88 (S2), A887A906.Google Scholar
Mahood, G. A. & Barker, D. R. 1986. Experimental constraints on depths of fractionation of mildly alkalic basalts and associated felsic rocks: Pantelleria, Strait of Sicily. Contributions to Mineralogy and Petrology 14, 381413.Google Scholar
Middlemost, E. A. A. 1995. A contribution to the nomenclature and classification of volcanic rocks. Geological Magazine 111, 51–7.Google Scholar
Mineeva, I. G. 2005. Controls on Precambrian uranium ore formation: the role of ancient oil (and evaporates?). Chapter 321. In Mineral Deposit Research: Meeting the Global Challenge (eds Mao, J. & Bierlein, F. P.), pp. 299302. Berlin: Springer-Verlag.Google Scholar
Momenzadeh, M. & Heidari, E. 1990. The encountered acritarchs and chitinozoans from Mila, Ilebek and Zard kuh formation in Tang-e-Ilbek at Zard kuh and their correlation with the Paleozoic sequence at Chal-i-sheh area. In Proceedings of Symposium on Diapirism with Spatial Reference to Iran, vol. 2, pp. 138215.Google Scholar
Morimoto, N. 1989. Nomenclature of pyroxenes.Canadian Mineralogist 27, 143–56.Google Scholar
Mukhopadhyay, B. 1991. Garnet-clinopyroxene geobarometry: the problems, a prospect, and an approximate solution with some applications. American Mineralogist 76, 512–29.Google Scholar
Nimis, P. & Taylor, R. 2000. Single clinopyroxene thermometry for garnet peridotites. Part I: calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contributions to Mineralogy and Petrology 139, 541–54.CrossRefGoogle Scholar
Nisbet, E. G. & Pearce, J. A. 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology 63, 149–60.Google Scholar
Pearce, J. A. & Cann, J. R. 1973. Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth and Planetary Science Letters 19, 290300.Google Scholar
Pilgrim, G. E. 1908. Geology of the Persian Gulf and the adjoining portions of Persia and Arabia. Memoirs of the Geological Survey of India 34, 1179.Google Scholar
Roedder, E. & Bodnar, R. J. 1980. Geologic pressure determinations from fluid inclusion studies. Annual Review of Earth and Planetary Sciences 8, 263301.Google Scholar
Samani, B. A. 1988. Recognition of uraniferous provinces from the Precambrian in Iran. Krystalinilaum 19, 147–65.Google Scholar
Shepherd, T. J., Rankin, A. K. & Alderton, D. H. M. 1985. A Practical Guide to Fluid Inclusion Studies. Glasgow: Blackie, 239 pp.Google Scholar
Smid, J., Schulmann, D. & Hrouda, F. 2001. Preliminary data on the AMS fabric in salt domes from the SW part of Zagros Mts., Iran. GeoLines (Praha) 13, 114–15.Google Scholar
Stöcklin, J. 1961. Lagunare Formation un Salzdome in Ostriran. Eclogae Geologicae Helvetiae 54, 114.Google Scholar
Stöcklin, J. 1968 a. Salt deposits of the Middle East. In Saline Deposits (ed. Mattox, R. B.), pp. 157–81. Geological Society of the America, Special Paper 88.Google Scholar
Stöcklin, J. 1968 b. Structural history and tectonics of Iran, a review. American Association of Petroleum Geologists Bulletin 52, 1229–58.Google Scholar
Talbot, C., Aftabi, P. & Chemica, Z. 2009. Potash in a salt mushroom at Hormuz Island, Hormuz Strait, Iran. Ore Geology Reviews 35, 317–32.Google Scholar
Talbot, C. J. & Alavi, M. 1996. The past of a future syntaxis across the Zagros. In Salt Tectonics (eds Alsop, G. I., Blundell, D. J. & Davison, I.), pp. 89109. Geological Society of London, Special Publication no. 100.Google Scholar
Taylor, H. P. 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Economic Geology 69, 843–83.Google Scholar
Thompson, R. N. 1974. Some high pressure pyroxenes. Mineralogical Magazine 39, 768–87.Google Scholar
Trusheim, J. 1974. Zur tektogenese der Zagros-Ketten sud-Irans. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 125, 119–50.Google Scholar
Turner, C. E. & Fishman, N. S. 1991. Jurassic Lake T'oo'dichi’: a large alkaline, saline lake, Morrison Formation, Eastern Colorado Plateau. Geological Society of America Bulletin 103, 538–58.Google Scholar
Van De Kamp, P. C. 1973. Holocene continental sedimentation in the Salton Basin, California: a reconnaissance. Geological Society of the America Bulletin 84, 827–48.Google Scholar
Van De Kamp, P. C. & Leake, B. E. 1996. Petrology, geochemistry, and Na metasomatism of Triassic-Jurassic non-marine clastic sediments in the Newark, Hartford, and Deerfield rift basins, northeastern USA. Chemical Geology 133, 89124.CrossRefGoogle Scholar
Walker, T. R. 1984. Diagenetic albitization of potassium feldspar in arkosic sandstones. Journal of Sedimentary Petrology 54, 316.Google Scholar
Wagner, B. H. & Jackson, M. P. A. 2011. Viscous flow during salt welding. Tectonophysics 510, 309–26.Google Scholar