Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T00:55:54.676Z Has data issue: false hasContentIssue false

Mesoscopic and magnetic fabrics in arcuate igneous bodies: an example from the Mandi-Karsog pluton, Himachal Lesser Himalaya

Published online by Cambridge University Press:  23 February 2010

R. JAYANGONDAPERUMAL
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun-248001, India
A. K. DUBEY
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun-248001, India
K. SEN*
Affiliation:
Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun-248001, India
*
*Author for correspondence: [email protected]

Abstract

Field, microstructural and anisotropy of magnetic susceptibility (AMS) data from the Palaeozoic Mandi-Karsog pluton in the Lesser Himalayan region reveal a concordant relationship between fabric of the Proterozoic host rock and the granite. The pluton displays a prominent arcuate shape on the geological map. The margin-parallel mesoscopic and magnetic fabrics of the granite and warping of the host rock fabric around the pluton indicate that this regional curvature is either synchronous or pre-dates the emplacement of the granite body. Mesoscopic fabric, magnetic fabric and microstructures indicate that the northern part of the pluton preserves its pre-Himalayan magmatic fabric while the central and southern part shows tectonic fabric related to the Tertiary Himalayan orogeny. The presence of NW–SE-trending aplitic veins within the granite indicates a post-emplacement stretching in the NE–SW direction. Shear-sense indicators in the mylonites along the margin of the pluton suggest top-to-the-SW shearing related to the Himalayan orogeny. Based on these observations, it is envisaged that the extension that gave rise to this rift-related magmatism had a NE–SW trend, that is, normal to the trend of the aplite veins. Subsequently, during the Himalayan orogeny, compression occurred along this same NE–SW orientation. These findings imply that the regional curvature present in the Himachal Lesser Himalaya is in fact a pre-Himalayan feature and the pluton has formed by filling a major pre-Himalayan arcuate extension fracture.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aranguren, A., Cuevas, J. & Tubia, J. M. 1996. Composite magnetic fabrics from S–C mylonites. Journal of Structural Geology 18, 863–9.Google Scholar
Aranguren, A., Tubia, J. M., Bouchez, J. L. & Vigneresse, J. L. 1996. The Guitiriz Granite, Variscan belt of northern Spain: extension-controlled emplacement of magma during tectonic escape. Earth and Planetary Science Letters 139, 165–76.Google Scholar
Bhat, M. I. 1987. Spasmodic rift reactivation and its role in the pre-orogenic evolution of the Himalayas. Tectonophysics 134, 103–27.CrossRefGoogle Scholar
Bhat, M. I., Zainuddin, S. M. & Rais, A. 1981. Panjal trap chemistry and the birth of Tethys. Geological Magazine 118, 365–75.CrossRefGoogle Scholar
Borradaile, G. J. & Henry, B. 1997. Tectonic applications of magnetic susceptibility and its anisotropy. Earth Science Review 42, 4993.CrossRefGoogle Scholar
Bouchez, J. L. 1997. Granite is never isotropic: an introduction to AMS studies of granitic rocks. In Granite: From Segregation of Melt to Emplacement Fabrics (eds Bouchez, J. L., Hutton, D. W. H. & Stephens, W. E.), pp. 95112. Dordrecht, The Netherlands: Kluwer Academic Publishers.Google Scholar
Bouillin, J. P., Bouchez, J. L., Lespinasse, P. & Pecher, A. 1993. Granite emplacement in an extensional setting: an AMS study of the magmatic structures of Monte Capanne (Elba, Italy). Earth and Planetary Science Letters 118, 263–79.CrossRefGoogle Scholar
Castro, A. & Fernández, C. 1998. Granite intrusion by externally induced growth and deformation of the magma reservoir: the example of the Plasenzuela pluton, Spain. Journal of Structural Geology 20, 1219–28.CrossRefGoogle Scholar
Chatterji, G. C. & Swaminath, J. 1977. The stratigraphy and structure of parts of the Simla Himalaya – a synthesis. Memoir of the Geological Survey of India 106, 408–88.Google Scholar
Corry, C. E. 1988. Laccoliths – mechanics of emplacement and growth. Geological Society of America, Special Paper no. 220, 120 pp.Google Scholar
Dubey, A. K., Bhakuni, S. S. & Selokar, A. D. 2004. Structural evolution of the Kangra recess, Himachal Himalaya: a model based on magnetic and petrofabric strains. Journal of Asian Earth Sciences 24, 245–58.Google Scholar
Gaetani, M., Garzanti, E. & Tintori, A. 1990. Permo-Carboniferous stratigraphy in SE Zanskar and NW Lahaul (NW Himalaya, India). Eclogae Geologicae Helvetiae 83, 143–61.Google Scholar
Geoffrey, L., Olivier, P. & Rochette, P. 1997. Structure of a hypovolcanic acid complex inferred from magnetic susceptibility anisotropy measurements: the Western Red Hills granites Skye, Scotland, Thulean Igneous Province. Bulletin of Volcanology 59, 147–59.Google Scholar
Gururajan, N. S. & Virdi, N. S. 1984. Superimposition of Early Paleozoic contact metamorphism by Tertiary regional metamorphism around Dalash, district Kulu, Himachal Pradesh (India). Journal of the Geological Society of India 25, 522–7.Google Scholar
Hutton, D. H. W. & Dumpster, T. J., Brown, P. E. & Becker, S. D. 1990. A new mechanism of granite emplacement: intrusion in active extensional shear zones. Nature 343, 452–5.CrossRefGoogle Scholar
Hutton, D. H. W. & Reavy, R. J. 1992 Strike-slip tectonics and granite petrogenesis. Tectonics 11, 960–7.Google Scholar
Islam, R., Upadhyay, R., Ahmed, T., Thakur, V. C. & Sinha, A. K. 1999. Pan-African Magmatism, and Sedimentation in the NW Himalaya. Gondwana Research 2, 263–70.CrossRefGoogle Scholar
Jäger, E., Bhandari, A. K. & Bhanot, V. B. 1971. Rb–Sr age determination of biotites and whole rock samples from the Mandi-Karsog and Chor Granite (H.P.) India. Eclogae Geologicae Helvetiae 64, 523–7.Google Scholar
Jelinek, V. 1981. Characterization of the magnetic fabric of rocks. Tectonophysics 79, T637.Google Scholar
LeFort, P. 1975. Himalaya: the collided range. Present knowledge of the continental arc. American Journal of Science 275, 144.Google Scholar
Miller, C., Thöni, M., Frank, W., Grasemann, B., Klötzli, U., Guntli, P. & Draganits, E. 2001. The early Palaeozoic magmatic event in the northwest Himalaya: source, tectonic setting and age of emplacement. Geological Magazine 138, 237–51.CrossRefGoogle Scholar
O'Driscoll, B., Troll, V. R., Reavy, R. J. & Turner, P. 2006. The Great Eucrite intrusion of Ardnamurchan, Scotland: Reevaluating the ring-dike concept. Geology 34, 189–92.CrossRefGoogle Scholar
Paterson, S. R., Fowler, T. K., Schimdt, K. L., Yoshinobu, A. S., Yuan, E. S. & Miller, R. B. 1998. Interpreting magmatic fabric patterns in plutons. Lithos 44, 5382.CrossRefGoogle Scholar
Petronis, M. S., O'Driscoll, B., Troll, V. R., Emeleus, C. H. & Geissman, J. W. 2009. Palaeomagnetic and anisotropy of magnetic susceptibility data bearing on the emplacement of the Western Granite, Isle of Rum, NW Scotland. Geological Magazine 146, 419–36.Google Scholar
Pilgrim, G. E. & West, W. D. 1928. Structure and correlation of Simla Rocks. Geological Survey of India (Memoirs) no. 53, 139 pp.Google Scholar
Rochette, P. 1987. Magnetic susceptibility of the rock matrix related to magnetic fabric studies. Journal of Structural Geology 9, 1015–20.CrossRefGoogle Scholar
Sen, K. & Mamtani, M. A. 2006. Magnetic fabric, shape preferred orientation and regional strain in granitic rocks. Journal of Structural Geology 28, 1870–82.CrossRefGoogle Scholar
Srikantia, S. V. & Bhargava, O. N. 1979. The Tandi Group of Lahaul – its geology and relationship with the Central Himalayan Gneiss. Journal of the Geological Society of India 29, 531–9.Google Scholar
Srikantia, S. V. & Bhargava, O. N. 1998. Geology of Himachal Pradesh. Geological Society of India (Bangalore), 408 pp.Google Scholar
Steck, A. 2003. Geology of the NW Indian Himalaya. Eclogae Geologicae Helvetiae 96, 147–96.Google Scholar
Stevenson, C. T. E., Owens, W. H. & Hutton, D. W. H. 2007. Flow lobes in granite: the determination of magma flow direction in the Trawenagh Bay Granite, N. W. Ireland, using anisotropy of magnetic susceptibility. Geological Society of America Bulletin 119, 1368–86.Google Scholar
Tarling, D. H. & Hrouda, F. 1993. The Magnetic Anisotropy of Rocks. London: Chapman & Hall, 212 pp.Google Scholar
Thakur, V. C. 1975. Some genetic significance of the development of foliation and lineation in the Dalhousie Granite body and surrounding metasedimentary formations of Chamba area of Himachal Pradesh. In Recent Researches in Geology, vol. 2 (ed. Verma, P. K. et al. ), pp. 4152. Delhi: Hindustan Publishing Corporation.Google Scholar
Thakur, V. C. & Rawat, B. S. 1992. Geological Map of the Western Himalaya. Scale 1:1,111,111. Dehra Dun: Wadia Institute of Himalayan Geology.Google Scholar
Tomezolli, R. N., McDonald, W. D. & Tickyj, H. 2003. Composite magnetic fabrics and S–C structures in granite gneiss of Cerro de los Viejos, La Pampa province, Argentina. Journal of Structural Geology 5, 351–68.Google Scholar
Valdiya, K. S. 1993. Evidence for Pan African–Cadomian tectonic upheavals in Himalaya. Journal of the Palaeontological Society of India 38, 5162.Google Scholar
Valdiya, K. S. 1995. Proterozoic sedimentation and Pan-African geodynamic development in the Himalaya. Precambrian Research 74, 3555.Google Scholar
Virdi, N. S. 1994. Basement structures and their possible relation to sedimentation and tectonics in the Tethyan Basin of Western Himalaya. Journal of Himalayan Geology 5, 1119.Google Scholar