Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T20:00:37.906Z Has data issue: false hasContentIssue false

Magnetic remanence in the Chalk of eastern England: an unusually resistant VRM?

Published online by Cambridge University Press:  01 May 2009

Graham J. Borradaile
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada

Abstract

A single component, natural remanent magnetization (NRM) is carried largely by pseudosingle domain magnetite in the Cretaceous Lower Chalk and Red Chalk of eastern England. The Red Chalk also records the same direction in haematite. Most of the ferro-magnetic minerals occur as primary clastic or early diagenetic grains. A stable remanence component is resistant to demagnetization, and is carried by both magnetite and haematite. Nevertheless, it has a steep inclination close to the present Earth's field and it is too steep for the previously reported palaeolatitude of these rocks at the time of sedimentation. A postglacial slump breccia scatters the ChRM but also provides some evidence of viscous, partial magnetic overprinting during slumping. Despite its resistance to thermal and alternating field demagnetization the characteristic remanent magnetization (ChRM) is probably a young Bruhnes epoch viscous remanent remagnetization (VRM).

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

As, J. A., 1960. Instruments and measuring methods in paleomagnetic research. Mededelingen Verhandelingen der Koninklijke Nederlandse Meteorologische Instituut no. 78.Google Scholar
Borradaile, G. J., 1994. Low temperature demagnitisation and ice-pressure demagnetisation. Geophysical Journal International 16, 571–84.CrossRefGoogle Scholar
Borradaile, G. J., Chow, N., & Werner, T., 1993. Magnetic hysteresis of limestones: facies control? Physics of the Earth and Planetary Interiors 76, 241–52.CrossRefGoogle Scholar
Day, R., Fuller, M. D., & Schmidt, V. A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Physics of the Earth and Planetary Interiors 13, 260–6.CrossRefGoogle Scholar
Dunlop, D. J., 1971. Magnetic properties of fine particle hematite. Annales de Géophysique 27, 269–93.Google Scholar
Dunlop, D. J., 1981. The rock magnetism of fine particles. Physics of the Earth and Planetary Interiors 26, 126.CrossRefGoogle Scholar
Dunlop, D. J., 1986 a. Hysteresis properties of magnetite and their dependence on particle size: a test of pseudosingle-domain remanence models. Journal of Geophysical Research 91, 9569–84.CrossRefGoogle Scholar
Dunlop, D. J., 1986 b. Coercive forces and coercivity spectra of submicron magnetites. Earth and Planetary Science Letters 78, 288–95.CrossRefGoogle Scholar
Dunlop, D. J., 1989. Viscous remanent magnetization (VRM) and viscous remagnetization. In Encyclopedia of Solid Earth Geophysics (ed. James, D. E.), pp. 12971303. New York: Van Nostrand Reinhold Company.Google Scholar
Dunlop, D. J., & Argyle, K. S., 1991. Separating multidomain and single-domain-like remanences in pseudosingle-domain magnetites (215–540 nm) by low temperature demagnetization. Journal of Geophysical Research 96, 2007–17.CrossRefGoogle Scholar
Dunlop, D. J., & Özdemir, O., 1993. Thermal demagnetization of VRM and pTRM of single domain magnetite: no evidence for anomalously high unblocking temperatures. Geophysical Research Letters 20, 1939–42.CrossRefGoogle Scholar
Eller, M. G., 1980. The Red Chalk of Eastern England: a Cretaceous analogue of Rosso Ammonitico. In Rosso Ammonitico Symposium (eds Eller, M. G., Farinacci, A. and Elmi, S.), pp. 207–31. Rome, June 15–21, 1980.Google Scholar
Enkin, R. J., & Dunlop, D. J., 1988. The demagnetization temperature necessary to remove viscous remanent magnetization. Geophysical Research Letters 15, 514–17.CrossRefGoogle Scholar
Flanders, P. J., 1988. An alternating-gradient magnetometer. Journal of Applied Physics 63, 3940–5.CrossRefGoogle Scholar
Henshaw, P. C., & Merrill, R. T., 1980. Magnetic and chemical changes in marine sediments. Reviews of Geophysics and Space Physics 18, 483504.CrossRefGoogle Scholar
Jackson, M., 1990. Diagenetic sources of stable remanence in remagnetized Paleozoic cratonic carbonates: a rock magnetic study. Journal of Geophysical Research 95, 2753–61.CrossRefGoogle Scholar
Jackson, M., Worm, H.-U., & Banerjee, S. K., 1990. Fourier analysis of digital hysteresis data: rock magnetic applications. Physics of the Earth and Planetary Interiors 65, 7887.CrossRefGoogle Scholar
Jackson, M. J., Sun, W.-W., & Craddock, J. P., 1992. The rock magnetic fingerprint of chemical remagnetization in midcontinental Paleozoic carbonates. Geophysical Research Letters 19, 781784.CrossRefGoogle Scholar
Jeans, C. V., 1973. The Market Weighton Structure: tectonics, sedimentation and diagenesis during the Cretaceous. Proceedings of the Yorkshire Geological Society 39, 409–44.CrossRefGoogle Scholar
Jeans, C. V., 1980. Early submarine lithification in the Red Chalk and Lower Chalk of Eastern England: a bacterial control model and its implications. Proceedings of the Yorkshire Geological Society 43, 81157.CrossRefGoogle Scholar
Kent, D. V., 1985. Thermoviscous remagnetization in some Appalachian limestones. Geophysical Research Letters 12, 805–8.CrossRefGoogle Scholar
Kent, P. E., 1967. Geology of the Southern North Sea Basin. Proceedings of the Yorkshire Geological Society 36, 122.CrossRefGoogle Scholar
Kent, P. E., 1980. Eastern England from the Tees to the Wash. British Regional Geology Series Handbooks, 2nd Ed. London: HMSO, 155 pp.Google Scholar
Kerth, M., & Hailwood, E. A., 1988. Magnetostratigraphy of the Lower Cretaceous Vectis Formation (Wealden Group) on the Isle of Wight, Southern England. Journal of the Geological Society, London 145, 351–60.CrossRefGoogle Scholar
Kirschvink, J. L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophysical Journal of the Royal Astronomical Society 62, 699718.CrossRefGoogle Scholar
Lowrie, W., & Heller, F., 1982. Magnetic properties of marine limestones. Reviews of Geophysics and Space Physics 20, 171–92.CrossRefGoogle Scholar
Lu, G., McCabe, C., Hanor, J. S., & Ferrell, R. E., 1991. A genetic link between remagnetization and potassic metasomatism in the Devonian Onondaga Formation, Northern Appalachian Basin. Geophysical Research Letters 18, 2047–50.CrossRefGoogle Scholar
Merrill, R. T., 1970. Low-temperature treatments of magnetite and magnetite-bearing rocks. Journal of Geophysical Research 75, 3343–9.CrossRefGoogle Scholar
Middleton, M. F., & Schmidt, P. W., 1982. Paleothermometry of the Sydney basin. Journal of Geophysical Research 87, 5351–9.CrossRefGoogle Scholar
Molyneux, L., 1971. A complete results magnetometer for measuring the remanent magnetization of rocks. Geophysical Journal of the Royal Astronomical Society 24, 429–33.CrossRefGoogle Scholar
Ozima, M., Ozima, M., & Akimoto, S., 1964. Low temperature characteristics of remanent magnetization of magnetite. Journal of Geomagnetism and Geoelectricity 16, 165–77.CrossRefGoogle Scholar
Pullaiah, G., Irving, E., Buchan, K. L., & Dunlop, D. J., 1975. Magnetization changes caused by burial and uplift. Earth and Planetary Science Letters 28, 133–43.CrossRefGoogle Scholar
Smith, A. G., Hurley, A. M., & Briden, J. C., 1981. Phanerozoic Paleocontinental World Maps. Cambridge Earth Sciences Series, Cambridge University Press, 102 pp.Google Scholar
Tarling, D. H., 1983. Paleomagnetism. London: Chapman and Hall, 379 pp.CrossRefGoogle Scholar
Wasilewski, P. J., 1973. Magnetic hysteresis in natural materials. Earth and Planetary Science Letters 20, 6772.CrossRefGoogle Scholar
Zuderveld, J. D. A., 1967. A.C. demagnetization of rocks: analysis of results. In Methods in Paleomagnetism (eds Collinson, D. W., Creer, K. M. and Runcorn, S. K.), pp. 254–6. New York: Elsevier.Google Scholar