Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T01:58:37.691Z Has data issue: false hasContentIssue false

K-richterite–olivine–phlogopite–diopside–sanidine lamproites from the Afyon volcanic province, Turkey

Published online by Cambridge University Press:  24 April 2008

CÜNEYT AKAL*
Affiliation:
Dokuz Eylül University, Engineering Faculty, Department of Geological Engineering, 35160 Buca, Izmir, Turkey
*

Abstract

Middle Miocene volcanic activity in the Afyon volcanic province (eastern part of Western Anatolia) is characterized by multistage potassic and ultrapotassic alkaline volcanic successions. The volcanism is generally related to the northward subduction of the African plate beneath the Eurasian Plate. In Afyon, the Middle Miocene volcanic products consist of melilite leucitite, tephriphonolite, trachyte, basaltic–trachyandesite, phonolite, phonotephrite, tephriphonolite and lamproite rocks. Near-surface emplacement and relatively quiescent subaerial eruptions of lamproitic magma produced different emplacement forms such as dome/plug-shaped bodies and lava flows, showing variation in volume and texture. The mineralogical constituents of the lamproites are sanidine, olivine (77 < Mg no. < 81), phlogopite (74 < Mg no. < 78), K-richterite, clinopyroxene (74 < Mg no. < 78), with accessory apatite, calcite and opaque minerals. Afyon lamproites resemble Mediterranean-type Si-rich lamproites. Their compositional range is 50–52 wt% SiO2, 4–8 wt% MgO, and they display a typical lamproitic affinity. Chondrite-normalized REE patterns exhibit enrichment in LREE relative to HREE ((La/Yb)CN=15.3–17.0). They show extreme enrichment in LILE relative to primitive mantle values and troughs of Nb and Ti. The lamproites give a range of high initial 87Sr/86Sr ratios and low 143Nd/144Nd ratios. The geochemical and isotopic characteristics suggest that lamproitic magma is derived from highly metasomatized mantle. The enrichment history may include metasomatic events related to subduction, as in other active orogenic areas of the Mediterranean.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agostini, S., Doglioni, C., Innocenti, F., Manetti, P., Tonarini, S. & Savaşçin, M. Y. 2007. The transition from subduction-related to intraplate Neogene magmatism in the Western Anatolia and Aegean area. In Cenozoic Volcanism in the Mediterranean Area (eds Beccaluva, L., Banchini, G. & Wilson, M.), pp. 115. Geological Society of America, Special Paper no. 418.Google Scholar
Akal, C. 2003. Mineralogy and geochemistry of melilite leucitites, Balçıkhisar, Afyon, Turkey. Turkish Journal of Earth Sciences 12, 215–39.Google Scholar
Alici, P., Temel, A., Gourgaud, A., Kieffer, G. & Gündoğdu, M. N. 1998. Petrology and geochemistry of potassic rocks in the Gölcük area (Isparta, SW Turkey): genesis of enriched alkaline magmas. Journal of Volcanology and Geothermal Research 85, 423–46.CrossRefGoogle Scholar
Altherr, R., Meyer, H.-P., Holl, A., Volker, F., Alibert, C., McCulloch, M. T. & Majer, V. 2004. Geochemical and Sr–Nd–Pb isotopic characteristics of Late Cenozoic leucite lamproites from the East European Alpine belt (Macedonia and Yugoslavia). Contributions to Mineralogy and Petrology 147, 5873.CrossRefGoogle Scholar
Beccaluva, L., Di Girolamo, P. & Serri, G. 1991. Petrogenesis and tectonic setting of the Roman volcanic province, Italy. Lithos 26, 191221.CrossRefGoogle Scholar
Benito, R., Lopez-Ruiz, J., Cebria, J. M., Hertogen, J., Doblas, M., Oyarzun, R. & Demaiffe, D. 1999. Sr and O isotope constraints on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of SE Spain. Lithos 46, 773802.CrossRefGoogle Scholar
Besang, C., Eckhardt, F.-J., Harre, W., Kreuzer, H. & Müller, P. 1977. Radiometrische altersbestimmungen an neogenen eruptivgesteinen der Türkei. Geologisches Jahrbuch Reihe B 25, 336.Google Scholar
Carlier, C. & Lorand, J. P. 2003. Petrogenesis of a zirconolite-bearing Mediterranean-type lamproite from the Peruvian Altiplano (Andean Cordillera). Lithos 69, 1535.CrossRefGoogle Scholar
Cebria, J.-M. & Wilson, M. 1995. Cenozoic mafic magmatism in Western/Central Europe: A common European asthenospheric reservoir? Terra Abstract 8, 162.Google Scholar
Conticelli, S. 1998. The effect of crustal contamination on ultrapotassic magmas with lamproitic affinity: mineralogical, geochemical and isotope data from the Torre Alfina lavas and xenoliths, Central Italy. Chemical Geology 149, 5181.CrossRefGoogle Scholar
Conticelli, S., D'Antonio, M., Pinarelli, L. & Civetta, L. 2002. Source contamination and mantle heterogeneity in the genesis of Italian potassic and ultrapotassic volcanic rocks: Sr–Nd–Pb isotope data from Roman Province and Southern Tuscany. Mineralogy and Petrology 74, 189222.CrossRefGoogle Scholar
Conticelli, S., Carlos, R. W., Widom, E. & Serri, G. 2007. Chemical and isotopic composition (Os, Pb, Nd and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: Inferences on the nature of their mantle sources. In Cenozoic Volcanism in the Mediterranean Area (eds Beccaluva, L., Banchini, G. & Wilson, M.), pp. 171202. Geological Society of America, Special Paper no. 418.Google Scholar
Conticelli, S., Melluso, L., Perini, G., Avanzinelli, R. & Boari, E. 2004. Petrologic, geochemical and isotopic characteristics of potassic and ultrapotassic magmatism in central-southern Italy; inferences on its genesis and on the nature of mantle sources. Periodico di Mineralogia 73, special issue 1, 135–64.Google Scholar
Conticelli, S., Manetti, P. & Menichetti, S. 1992. Mineralogy, geochemistry and Sr-isotopes in orendites from South Tuscany, Italy; constraints on their genesis and evolution. European Journal of Mineralogy 4, 1359–75.CrossRefGoogle Scholar
Conticelli, S. & Peccerillo, A. 1992. Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy: petrogenesis and inferences on the evolution of the mantle sources. Lithos 28, 221–40.CrossRefGoogle Scholar
Çoban, H. & Flower, M. F. J. 2006. Mineral phase compositions in silica-undersaturated ‘leucite’ lamproites from the Bucak area, Isparta, SW Turkey. Lithos 89, 275–99.CrossRefGoogle Scholar
Dewey, J. F. & Şengör, A. M. C. 1979. Aegean and surrounding regions: complex multiplate and continuum tectonics in convergent zone. Geological Society of America Bulletin 90, 8492.2.0.CO;2>CrossRefGoogle Scholar
Doglioni, C., Agostini, S., Crespi, M., Innocenti, F., Manetti, P., Riguzzi, F. & Savaşçin, Y. 2002. On the extension in Western Anatolia and the Aegean sea. In Reconstruction of the Evolution of the Alpine–Himalayan Orogen (eds G. Rosenbaum & G. S. Lister), pp. 169–84. Journal of the Virtual Explorer 8.CrossRefGoogle Scholar
Duggen, S., Hoernle, K., Van Den Bogaard, P. & Garbe-Schonberg, D. 2005. Post-Collisional Transition from Subduction- to Intraplate-type Magmatism in the Westernmost Mediterranean: Evidence for Continental-Edge Delamination of Subcontinental Lithosphere. Journal of Petrology 46, 11551201.CrossRefGoogle Scholar
Edgar, A. D. & Mitchell, R. H. 1997. Ultra high pressure–temperature melting experiments on an SiO2-rich lamproite from Smoky Butte, Montana; derivation of siliceous lamproite magmas from enriched sources deep in the continental mantle. Journal of Petrology 38, 457–77.CrossRefGoogle Scholar
Ellam, R., Hawkesworth, C., Menzies, M. & Rogers, N. 1989. The volcanism of southern Italy: Role of subduction and the relationship between potassic and sodic alkaline volcanism. Journal of Geophysical Research 94, 4589–601.CrossRefGoogle Scholar
Foley, S. F. 1990. Experimental constraints on phlogopite chemistry in lamproites: 2. Effect of pressure-temperature variations. European Journal of Mineralogy 2, 327–41.CrossRefGoogle Scholar
Foley, S. F. 1992 a. Petrological characterization of the source components of potassic magmas: geochemical and experimental constraints. Lithos 28, 187204.CrossRefGoogle Scholar
Foley, S. F. 1992 b. Vein-plus-wall-rock melting mechanisms in the lithosphere and the origin of potassic magmas. Lithos 28, 435–53.CrossRefGoogle Scholar
Foley, S. F. 1994. Geochemische und experimentelle Untersuchungen zur Genese der kalireichen Magmatite. Neues Jahrbuch für Mineralogie-Abhandlungen 167, 155.Google Scholar
Foley, S. F., Venturelli, G., Green, D. H. & Toscani, L. 1987. The ultrapotassic rocks: characteristics, classification and constraints for petrogenetic models. Earth Science Reviews 24, 81134.CrossRefGoogle Scholar
Francalanci, L., Civetta, L., Innocenti, F. & Manetti, P. 1990. Tertiary–Quaternary alkaline magmatism of the Aegean–Western Anatolian area: a petrological study in the light of new geochemical and isotopic data. In Proceedings of the International Earth Sciences Colloquium of the Aegean Region (eds Savaşçın, M. Y. & Eronat, A. H.), pp. 385–96. DEU, Izmir, Turkey.Google Scholar
Francalanci, L., Innocenti, F., Manetti, P. & Savaşçin, M. Y. 2000. Neogene alkaline volcanism of the Afyon–Isparta area, Turkey: petrogenesis and geodynamic implications. Mineralogy and Petrology 70, 285312.CrossRefGoogle Scholar
Fraser, K., Hawkesworth, C., Erlank, A., Mitchell, R. & Scott-Smith, B. 1985. Sr, Nd and Pb isotope and minor element geochemistry of lamproites and kimberlites. Earth and Planetary Science Letters 76, 5770.CrossRefGoogle Scholar
Fytikas, M., Giuliani, O., Innocenti, F., Marinelli, G. & Mazzuoli, R. 1976. Geochronological data on recent magmatism of the Aegean Sea. Tectonophysics 21, 2934.CrossRefGoogle Scholar
Innocenti, F., Agostini, T. S., Di Vincenzo, G., Doglioni, C., Manetti, P., Savaşçin, M. Y. & Tonarini, S. 2005. Neogene and Quaternary volcanism in Western Anatolia: Magma sources and geodynamic evolution. Marine Geology 221, 397421.CrossRefGoogle Scholar
Keller, J. 1983. Potassic lavas in the orogenic volcanism of the Mediterranean area. Journal of Volcanology and Geothermal Research 18, 321–35.CrossRefGoogle Scholar
Keller, J. & Villari, L. 1972. Rhyolitic ignimbrites in the region of Afyon (central Anatolia). Bulletin Volcanologique 36, 342–58.CrossRefGoogle Scholar
Koçyiğit, A. 1984. Intra-plate neotectonic development in southwestern Turkey and adjacent areas. Bulletin Geological Society of Turkey 27, 115.Google Scholar
Kretz, R. 1983. Symbols for rock-forming minerals. American Mineralogist 68, 277–9.Google Scholar
Leake, B. E. 1978. Nomenclature of Amphiboles. Mineralogical Magazine 42, 533–63.Google Scholar
Lefevre, C., Bellon, H. & Poisson, A. 1983. Presence de leucitites dans le volcanism Pliocene de la region d'Isparta (Taurides occidentales, Turquie). Comptes Rendus de l'Academie des Sciences 297, 367–72.Google Scholar
Libourel, G. 1999. Systematics of calcium partitioning between olivine and silicate melt: implications for melt structure and calcium content of magmatic olivines. Contributions to Mineralogy and Petrology 136, 6380.CrossRefGoogle Scholar
Mitchell, R. H. 1985. A review of the mineralogy of lamproites. Transactions of the Geological Society of South Africa 88, 411–37.Google Scholar
Mitchell, R. H. 1995. Melting experiments on a sanidine phlogopite lamproite at 4–7 GPa and their bearing on the sources of lamproitic magmas. Journal of Petrology 36, 1455–74.CrossRefGoogle Scholar
Mitchell, R. H. & Bergman, S. C. 1991. Petrology of Lamproites. New York and London: Plenum Press, 447 pp.CrossRefGoogle Scholar
Mitchell, R. H. & Edgar, A. D. 2002. Melting experiments on SiO2-rich lamproites to 6.4 GPa and their bearing on the sources of lamproite magmas. Mineralogy and Petrology 74, 115–28.CrossRefGoogle Scholar
Morimoto, N. 1989. Nomenclature of pyroxenes. Canadian Mineralogist 27, 143–56.Google Scholar
Murphy, D. T., Collerson, K. D. & Kamber, B. S. 2002. Lamproites from Gaussberg, Antarctica: possible transition zone melts of Archaean subducted sediments. Journal of Petrology 43, 9811001.CrossRefGoogle Scholar
Nelson, D. R. 1992. Isotopic characteristics of potassic rocks: evidence for the involvement of subducted sediments in magma genesis. Lithos 28, 403–20.CrossRefGoogle Scholar
Nelson, D. R., McCulloch, M. T. & Sun, S.-S. 1986. The origins of ultrapotassic rocks as inferred from Sr, Nd and Pb isotopes. Geochimica et Cosmochimica Acta 50, 231–45.CrossRefGoogle Scholar
Peccerillo, A. 1985. Roman comagmatic province (Central Italy): Evidence for subduction related magma genesis. Geology 13, 103–6.2.0.CO;2>CrossRefGoogle Scholar
Peccerillo, A. 1992. Potassic and ultrapotassic rock: Compositional characteristics, petrogenesis, and geological significance. Episodes 15, 243–51.CrossRefGoogle Scholar
Peccerillo, A. 1995. Mafic calc-alkaline to ultrapotassic magmas in central-southern Italy; constraints on evolutionary processes and implications for source composition and conditions of magma generation. In Proceedings of the Symposium on the Physics and the Chemistry of the Upper Mantle, pp. 171–89. Rio de Janeiro: Academia Brasileira de Ciencias.Google Scholar
Peccerillo, A. 1999. Multiple mantle metasomatism in central-southern Italy: geochemical effects, timing and geodynamic implications. Geology 27, 315–18.2.3.CO;2>CrossRefGoogle Scholar
Peccerillo, A. 2003. Plio-Quaternary magmatism in Italy. Episodes, Journal of International Geoscience 26, 222–6.Google Scholar
Peccerillo, A., Poli, G. & Serri, G. 1988. Petrogenesis of orenditic and kamafugitic rocks from central Italy. Canadian Mineralogist 26, 4565.Google Scholar
Prelević, D. & Foley, S. F. 2007. Accretion of arc-oceanic lithospheric mantle in the Mediterranean: Evidence from extremely high-Mg olivines and Cr-rich spinel inclusions in lamproites. Earth and Planetary Science Letters 256, 120–35.CrossRefGoogle Scholar
Prelević, D., Foley, S. F. & Cvetković, V. 2007. A review of petrogenesis of Mediterranean Tertiary lamproites: a perspective from the Serbian ultrapotassic province. In Cenozoic Volcanism in the Mediterranean Area (eds Beccaluva, L., Banchini, G. & Wilson, M.), pp. 113–29. Geological Society of America, Special Paper no. 418.Google Scholar
Prelević, D., Foley, S. F., Romer, R. L., Cvetković, V. & Downes, H. 2005. Tertiary Ultrapotassic Volcanism in Serbia: Constraints on Petrogenesis and Mantle Source Characteristics. Journal of Petrology 46, 1443–87.CrossRefGoogle Scholar
Rogers, N. W. 1992. Potassic magmatism as a key to trace-element enrichment processes in the upper mantle. Journal of Volcanology and Geothermal Research 50, 8599.CrossRefGoogle Scholar
Rogers, N. W., Parker, R. J., Hawkesworth, R. J. & Marsh, J. S. 1985. The geochemistry of potassic lavas from Vulsini, Central Italy, and implications for mantle enrichment process beneath the Roman region. Contributions to Mineralogy and Petrology 90, 244–57.CrossRefGoogle Scholar
Savaşçin, M. Y. & Oyman, T. 1998. Tectono–Magmatic Evolution of Alkaline Volcanics at the Kirka–Afyon–Isparta Structural Trend, SW Turkey. Turkish Journal of Earth Sciences 7, 201–14.Google Scholar
Sheraton, J. W. & Cundari, A. 1980. Leucitites from Gaussberg, Antarctica. Contributions to Mineralogy and Petrology 71, 417–27.CrossRefGoogle Scholar
Sun, S.-S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In Magmatism in the Ocean Basins Saunders (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Thompson, R. N. 1997. Primary basalts and magma genesis. III. Alban Hills, Roman Comagmatic Province, central Italy. Contributions to Mineralogy and Petrology 55, 131.Google Scholar
Venturelli, G., Capedri, S., Di Battistini, G., Crawford, A. J., Kogarko, L. N. & Celestini, S. 1984 a. The ultrapotassic rocks from southeastern Spain. Lithos 17, 3754.CrossRefGoogle Scholar
Venturelli, G., Thorpe, R. S., Dal Piaz, G. V., Del Moro, A. & Potts, P. J. 1984 b. Petrogenesis of calc-alkaline, shoshonitic and associated ultrapotassic Oligocene volcanic rocks from the Northwestern Alps, Italy. Contributions to Mineralogy and Petrology 86, 209–20.CrossRefGoogle Scholar
Wagner, C. & Velde, D. 1986. The mineralogy of K-richterite-bearing lamproites. American Mineralogist 71, 1737.Google Scholar
Zindler, A. & Hart, S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar