Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T15:54:54.578Z Has data issue: false hasContentIssue false

Intrusion age of Pan-African augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation

Published online by Cambridge University Press:  01 May 2009

R. Hetzel
Affiliation:
Institut für Geowissenschaften, Johannes Gutenberg-Universität, 55099 Mainz, Germany
T. Reischmann
Affiliation:
Institut für Geowissenschaften, Johannes Gutenberg-Universität, 55099 Mainz, Germany Max-Planck-Institut für Chemie, Abteilung Geochemie, 55023 Mainz, Germany

Abstract

Pb–Pb single zircon ages of 546.2 ± 1.2 Ma demonstrate that the augen gneisses in the southern Menderes Massif were generated from Pan-African intrusions. During the Alpine orogenic evolution of the Menderes Massif these granites were metamorphosed and transformed into augen gneiss in an extensional top-to-the-south shear zone, located between augen gneisses and overlying schists. Quartz fabrics suggest a pronounced static recrystallization that post-dates the ductile deformation in the shear zone. Ar–Ar muscovite ages of 43–37 Ma from augen gneisses and schists suggest that ductile deformation and subsequent cooling occurred in the Eocene. These results contradict previous models that (1) interpret the extensional shear zone as late Oligocene in age and (2) regard the augen gneisses as syntectonic with respect to ductile extensional deformation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashworth, J. R., & Evirgen, M. M. 1984. Garnet and as sociated minerals in the southern margin of the Menderes Massif, southwest Turkey. Geological Magazine 121, 323–37.CrossRefGoogle Scholar
Bozkurt, E., Park, R. G., & Winchester, J. A. 1993. Evidence against the core/cover interpretation of the southern sector of the Menderes Massif, west Turkey. Terra Nova 5, 445–51.CrossRefGoogle Scholar
Bozkurt, E., & Park, R. G. 1994. Southern Menderes Massif: an incipient metamorphic core complex in western Anatolia, Turkey. Journal of the Geological Society, London 151, 213–16.CrossRefGoogle Scholar
Bozkurt, E., Winchester, J. A., & Park, R. G. 1995. Geochemistry and tectonic significance of augen gneisses from the southern Menderes Massif (West Turkey). Geological Magazine 132, 287301.CrossRefGoogle Scholar
Bucher, K., & Frey, M. 1994. Petrogenesis of metamorphic rocks. Springer, Heidelberg, 318 pp.CrossRefGoogle Scholar
Dalrymple, G. B., & Lanphere, M. A. 1974. 40Ar/39Ar age spectra of some undisturbed terrestrial samples. Geochimica et Cosmochimica Acta 38, 716–38.Google Scholar
Dora, O. Ö., Kun, N., & Candan, O. 1990. Metamorphic history and geotectonic evolution of the Menderes Massif. In Proceedings of the International Earth Sciences Congress on Aegean Regions (eds Savascin, M. Y., and Eronat, A. H.), pp. 102–15. Geological Society of Greece.Google Scholar
Dürr, S. 1975. Über das Alter und geotektonische Stellung des Menderes-Kristallins/SW-Anatolien und seine Äquivalente in der mittleren Ägäis. Habilitationsschrift, Marburg/Lahn, 107 pp.Google Scholar
Erdogan, B. 1992. Problem of core-mantle boundary of Menderes Massif. In Proceedings of the International Symposium on Eastern Mediterranean Geology (eds Anil, M. and Nazik, A.), pp. 314–15. Geosound 20.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., & Smith, D. G. 1989. A geologic time scale. Cambridge: Cambridge University Press, 263 pp.Google Scholar
Hetzel, R., Ring, U., Akal, C., & Troesch, M. 1995. Miocene NNE-directed extensional unroofing in the Menderes Massif, southwestern Turkey. Journal of the Geological Society, London 152, 639–54.CrossRefGoogle Scholar
Jäger, E. 1979. Introduction to geochronology. In Lectures in isotope geology (eds Jäger, E., and Hunziker, J. C.), pp. 112. Berlin: Springer- Verlag.CrossRefGoogle Scholar
Kober, B. 1986. Whole grain evaporation for 207Pb/206Pb-age investigations on single zircons using a double-filament thermal ion source. Contributions to Mineralogy and Petrology 93, 482–90.CrossRefGoogle Scholar
Kober, B. 1987. Single-zircon evaporation combined with Pb+emitter-bedding for 207Pb/206Pb-age investigations using thermal ion mass spectrometry. Contributions to Mineralogy and Petrology 96, 6371.CrossRefGoogle Scholar
Kröner, A., Jaeckel, P., & Williams, I. S. 1994. Pb-loss patterns in zircons from a high-grade metamorphic terrain as revealed by different dating methods: U—Pb and Pb—Pb ages for igneous and metamorphic zircons from northern Sri Lanka. Precambrian Research 66, 151–81.CrossRefGoogle Scholar
Kröner, A., & §engör, A. C. M. 1990. Archean and Proterozoic ancestry in late Precambrian to early Paleozoic crustal elements of southern Turkey as revealed by single-zircon dating. Geology 18, 1186–90.2.3.CO;2>CrossRefGoogle Scholar
Loos, S., & Reischmann, T. 1995. Geochronological data on the southern Menderes Massif, SW Turkey, obtained by single zircon Pb evaporation. Terra Abstracts, 5, 353.Google Scholar
Odin, G. S. 1994. Geological time scale (1994). Comptes Rendues Académie des Sciences 318, Série II, 5971.Google Scholar
Pryer, L. L. 1993. Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. Journal of Structural Geology 15, 2136.CrossRefGoogle Scholar
Pupin, J. P., & Turco, G. 1975. Typologie de zircon accessoire dans les roches plutoniques dioritiques, granitiques et syénitiques. Facteurs essentiels déterminant les variations typologiques. Pétrologie 1, 139–56.Google Scholar
Reischmann, T., Kröner, A., Todt, W., Dörr, S., & Şengör, A. C. M. 1991. Episodes of crustal growth in the Menderes Massif, W Turkey, inferred from zircon dating. Terra Abstracts 3, 34.Google Scholar
Satir, M., & Friedrichsen, H. 1986. The origin and evolution of the Menderes Massif, W-Turkey: A rubidium/strontium and oxygen isotope study. Geologische Rundschau 75, 703–14.CrossRefGoogle Scholar
Şengör, A. M. C., & Yilmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181241.CrossRefGoogle Scholar
Şengör, A. M. C, Satir, M., & Akkök, R. 1984. Timing of tectonic events in the Menderes Massif, western Turkey: implications for tectonic evolution and evidence for Pan-African basement in Turkey. Tectonics 3, 693707.CrossRefGoogle Scholar
Steiger, R. H., & Jäger, E. 1977. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth and Planetary Science Letters 36, 359–62.CrossRefGoogle Scholar