Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-13T03:04:05.343Z Has data issue: false hasContentIssue false

Interacting tectonic faulting, karst subsidence, diapirism and continental sedimentation in Pleistocene deposits of the central Ebro Basin (Spain)

Published online by Cambridge University Press:  14 May 2014

JOSÉ LUIS SIMÓN*
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
MARÍA ASUNCIÓN SORIANO
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
ANTONIO PÉREZ
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
ARÁNZAZU LUZÓN
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
ANDRÉS POCOVÍ
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
HÉCTOR GIL
Affiliation:
Dpto Ciencias de la Tierra, Universidad de Zaragoza, 50009 Zaragoza, Spain
*
Author for correspondence: [email protected]

Abstract

During Early, as proposed by the International commission on stratigraphy Pleistocene times, interacting fluvial and aeolian processes constructed wide alluvial plains over an evaporite-dominated Miocene substratum in the central Ebro Basin. An exceptional site where these deposits show faults, folds, diapirs, karst structures and unconformities has been studied in detail. Analysis of particular structures demonstrates the interaction by that time of tectonic faulting, diapirism, karstification and sedimentation in an area where deformation was traditionally linked to the presence of underlying evaporites, without proposing any precise mechanism. Multiple approaches (sedimentology, structural geology and geophysics) have been used in order to discriminate the origin of each type of structure as well as to understand the interaction between different processes. Numerous normal faults and fractures of variable size are consistent with the regional stress field. Pleistocene deposits are pierced by diapirs of Miocene evaporites and disrupted by karst structures with different geometries (tubular, funnel and vault), both partially controlled by tectonics. The example described is proposed as an analogue model that could successfully illustrate evolution patterns of basins of potential interest for petroleum geology where similar processes have actuated, resulting in complex stratigraphical architectures.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anadón, P., Cabrera, L., Colombo, F., Marzo, M. & Riba, O. 1986. Syntectonic intraformational unconformities in alluvial fan deposits, eastern Ebro basin margins (NE Spain). In Foreland Basins (eds Allen, P. & Homewood, P.), pp. 259–71. IAS, Special Publication no. 8.Google Scholar
Andeweg, B., De Vicente, G., Cloething, S., Giner, J. & Muñoz-Martín, A. 1999. Local stress fields and intraplate deformation of Iberia: variations in spatial and temporal interplay of regional stress sources. Tectonophysics 305, 153–64.Google Scholar
Arlegui, L. E. & Simón, J. L. 2000. Fracturación y campos de esfuerzos en el Cuaternario del sector central de la Cuenca del Ebro (NE España). Cuaternario y Geomorfología 14, 1120.Google Scholar
Arlegui, L. E. & Simón, J. L. 2001. Geometry and distribution of regional joint sets in a non-homogeneous stress field: case study in the Ebro basin (Spain). Journal of Structural Geology 23, 297313.Google Scholar
Arlegui, L. E. & Soriano, M. A. 2003. An example of a comparison between Thematic Mapper and radar images in the central Ebro basin. International Journal of Remote Sensing 24, 457–74.Google Scholar
Aschoff, J. L. & Schmitt, J. G. 2008. Enhancing growth strata analysis by distinguishing syntectonic unconformity types. Journal of Sedimentary Research 78, 608–23.Google Scholar
Banham, S. G., Mountney, N. P., Kane, I. & McCaffery, W. D. 2011. Controls on sedimentary evolution and preservation of dryland fluvial systems inactively subsiding salt-walled mini-basins (Salt Anticline Region, Utah). In 28th IAS Meeting of Sedimentology, Abstracts (eds Bádenas, B., Aurell, M. and Alonso-Zarza, A. M.), pp. 72. Zaragoza, Spain.Google Scholar
Beck, B. F. 2004. Soil piping and sinkhole failures. In Encyclopedia of Caves (ed. White, W. B.), pp. 523–8. New York: Elsevier.Google Scholar
Benito, G. & Casas, A. M. 1987. Small-scale deformations in Quaternary deposits in the northeastern Iberian peninsula. Géologie Méditerranéenne 14, 233–43.Google Scholar
Benito, G., Pérez-González, A., Gutiérrez, F. & Machado, M.J. 1998. River response to Quaternary subsidence due to evaporite solution (Gállego River, Ebro Basin, Spain). Geomorphology 22, 243–63.Google Scholar
Benito, G., Pérez-González, A. & Machado, M. J. 2000. Geomorphological and sedimentological features in Quaternary fluvial systems affected by solution-induced subsidence (Ebro Basin, NE-Spain). Geomorphology 33, 209–24.Google Scholar
Blissenbach, E. 1954. Geology of alluvial fans in semiarid regions. Geological Society of America Bulletin 65, 175–90.CrossRefGoogle Scholar
Briant, R., Bateman, M. D., Coope, G. R. & Gibbard, P. L. 2005. Climatic control on Quaternary fluvial sedimentology of a Fenland Basin river, England. Sedimentology 52, 1397–423.Google Scholar
Bull, W. B. 1968. Alluvial fans. Journal of Geological Education 16, 101–6.Google Scholar
Calaforra, J. M. & Pulido-Bosch, A. 1999. Gypsum karst features as evidence of diapiric processes in the Betic Cordillera, Southern Spain. Geomorphology 29, 251–64.CrossRefGoogle Scholar
Clemmensen, L. B. & Dam, G. 1973. Aeolian sand-sheet deposits in the Lower Cambrian Neksø Sandstone Formation, Bornholm, Denmark: sedimentary architecture and genesis. Sedimentary Geology 83, 7185.Google Scholar
Colomer, M. V., Navarro, J. J., Hernández, A. & Ramírez, J. I. 2006. Mapa geológico de España: Pina de Ebro (412): Instituto Geológico y Minero de España, scale 1:50000, 1 sheet.Google Scholar
Cortés, A. L., Liesa, C. L., Simón, J. L., Casas, A. M., Maestro, A. & Arlegui, L. E. 1996. El campo de esfuerzos compresivo neógeno en el NE de la Península Ibérica. Geogaceta 20, 806–9.Google Scholar
Davies, N. S., Turner, P. & Sansom, I. J. 2004. Soft-sediment deformation structures in the Late Silurian Stubdal Formation: the result of seismic triggering. Norwegian Journal of Geology 85, 233–43.Google Scholar
Dogan, U. 2005. Land subsidence and caprock dolines caused by subsurface gypsum dissolution and the effect of subsidence on the fluvial system in the Upper Tigris Basin (between Bismil-Batman, Turkey). Geomorphology 71, 389401.Google Scholar
Folk, R. L. 1966. A review of grain size parameters. Sedimentology 6, 7393.Google Scholar
Ford, D. C. 1997. Principal features of evaporite karst in Canada. Carbonates and Evaporites 12, 1523.Google Scholar
Ford, D. & Williams, P. 1989. Karst Geomorphology and Hydrology. London: Capman & Hall.Google Scholar
Fryberger, S. G. & Schenk, C. J. 1988. Pin stripe lamination: a distinctive feature of modern and ancient eolian sediments. Sedimentary Geology 55, 115.Google Scholar
García-Castellanos, D., Vergés, J., Gasper-Escribano, J. & Cloetingh, S. 2003. Interplay between tectonics, climate and fluvial transport during the Cenozoic evolution of the Ebro Basin (NE Iberia). Journal of Geophysical Research 108, 118.Google Scholar
Gil, H., Luzón, A., Soriano, M. A., Casado, I., Pérez, A., Yuste, A., Pueyo, E. & Pocoví, A. 2013 a. Stratigraphic architecture of alluvial-aeolian systems developed on active karst terrains: an Early Pleistocene example from the Ebro Basin. Sedimentary Geology 296, 122–41.Google Scholar
Gil, H., Pueyo, E., Palma-Rodrigues, A., Soriano, M. A., Luzón, A., Pocoví, A., Pérez, A. & Yuste, A. 2013 b. Caracterización paleomágnética y anisotropía de susceptibilidad magnética (ASM) de las terrazas antiguas del río Ebro. Geogaceta 53, 129–32.Google Scholar
Gruszka, B. & Loon, A. J. 2007. Pleistocene glaciolacustrine breccias of seismic origin in an active graben (central Poland). Sedimentary Geology 193, 93104.Google Scholar
Guerrero, J., Gutiérrez, F. & Lucha, P. 2004. Paleosubsidence and active subsidence due to evaporite dissolution in the Zaragoza area (Huerva River valley, NE Spain): processes, spatial distribution and protection measures for transport routes. Engineering Geology 72, 309–29.Google Scholar
Guglielmo, G., Jackson, M. P. A. & Vendeville, B. C. 1997. Three-dimensional visualization of salt walls and associated fault systems. AAPG Bulletin 81, 4661.Google Scholar
Gustavson, T. C. 1986. Geomorphic development of the Canadian River Valley, Texas Panhandle: an example of regional salt dissolution and subsidence. Geological Society of America Bulletin 97, 459–72.Google Scholar
Gutiérrez, F., Guerrero, J. & Lucha, P. 2008. A genetic classification of sinkholes illustrated from evaporite paleokarst exposures in Spain. Environmental Geology 53, 9931006.Google Scholar
Hein, F. J. & Walker, R. G. 1977. Bar evolution and development of stratification in the gravelly, braided Kicking Horse river, British Columbia. Canadian Journal of Earth Sciences 14, 562–70.Google Scholar
Hempton, M. R. & Dewey, J. F. 1983. Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian fault, south-east Turkey. Tectonophysics 98, T714.Google Scholar
Herraiz, M., de Vicente, G., Lindo-Ñaupari, R., Giner, J., Simón, J. L., González-Casado, J. M., Vadillo, O., Rodríguez-Pascua, M. A., Cicuéndez, J. I., Casas, A., Cabañas, L., Rincón, P., Cortés, A. L., Ramírez, M. & Lucini, M. 2000. The recent (upper Miocene to Quaternary) and present tectonic stress distributions in the Iberian Peninsula. Tectonics 19, 762–86.Google Scholar
Hunter, R. E. 1977. Basic types of stratification in small eolian dunes. Sedimentology 24, 361–87.Google Scholar
Hunter, R. E. 1981. Stratification styles in eolian sandstones: some Pennsylvanian to Jurassic examples from the western interior U.S.A. In Recent and Ancient Nonmarine Depositional Environments (eds Ethridge, F. G. & Flores, R. M.), pp. 315329. SEPM, Special Publication no. 31.Google Scholar
Jackson, M. P. A., Vendeville, B. C. & Schultz-Ela, D. D. 1994. Structural dynamics of fault systems. Annual Review of Earth and Planetary Sciences 22, 93117.Google Scholar
Kocurek, G. 1991. Interpretation of ancient eolian sand dunes. Annual Review of Earth and Planetary Sciences 19, 4375.Google Scholar
Kocurek, G. & Dott, R. 1981. Distinctions and uses of stratification types in the interpretation of eolian sand. Journal of Sedimentary Petrology 51, 579–95.Google Scholar
Kocurek, G. & Havholm, K. G. 1993. Eolian sequence stratigraphy - a conceptual framework. In Siliciclastic Sequence Stratigraphy, Recent Developments and Applications (eds Weimer, P. & Posamentier, H. W.), pp 393409. American Association of Petroleum Geologists, Memoir no. 58.Google Scholar
Lancaster, N. 1981. Grain size characteristics of Namib Desert linear dunes. Sedimentology 28, 115–22.Google Scholar
Lancaster, N. 1986. Grain-size characteristics of linear dunes in the southwestern Kalahari. Journal of Sedimentary Petrology 56, 395400.Google Scholar
Liesa, C. L. & Simón, J. L. 2009. Evolution of intraplate stress fields under multiple compressions: the case of the Iberian Chain (NE Spain). Tectonophysics 474, 144–59.CrossRefGoogle Scholar
Looff, K. M. & Looff, K. M. 2000. Subsidence, sinkholes, and piping associated with Gulf Coast salt domes. Proceedings SMRI Fall 2000 Meeting, San Antonio, Texas, pp. 275301.Google Scholar
Luzón, A., Pérez, A., Pocoví, A., Soriano, M. A., Gil, H., Rodríguez-López, J. P. & Simón, J. L. 2011. Sedimentary record related to the evolution of Quaternary dolines in the central Ebro Basin (Spain). Geo-Guias 7, 199226.Google Scholar
Luzón, A., Pérez, A., Soriano, M. A. & Pocoví, A. 2008. Sedimentary record of Pleistocene paleodoline evolution in the Ebro basin (NE Spain). Sedimentary Geology 205, 113.Google Scholar
Luzón, A., Rodríguez-López, J. P., Pérez, A., Soriano, M. A., Gil, H. & Pocoví, A. 2012. Karst subsidence as a control on the accumulation and preservation of aeolian deposits: a Pleistocene example from a proglacial outwash setting, Ebro Basin, Spain. Sedimentology 59, 2199–225.Google Scholar
Marqués, L. A., Santos, J. A., Esnaola, J. M. & Gil Marín, C. 1998. Mapa geológico de España: Fuentes de Ebro (384): Instituto Geológico y Minero de España, scale 1:50000, 2nd series, 1 sheet.Google Scholar
Mastalerz, K. & Wojewoda, J. 1993. Alluvial-fan sedimentation along an active strike-slip fault: plio- Pleistocene Pre-Kaczawa fan, SW Poland. In Alluvial Sedimentation (eds Marzo, M. & Puigdefábregas, C.), pp. 293304. IAS, Special Publication no. 17.Google Scholar
Miall, A. D. 1978. Lithofacies types and vertical profile models in braided river deposits: a summary. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 597604. Canadian Society of Petroleum Geology, Memoir no. 5.Google Scholar
Miall, A. D. 1996. The Geology of Fluvial Deposits. Sedimentary Facies, Basin Analysis, and Petroleum Geology. Berlin: Springer-Verlag.Google Scholar
Morgan, J. P., Coleman, J. M. & Gagliano, S. M. 1968. Mudlumps: diapiric structures in the Mississippi delta sediments. In Diapirim and Diapirs (eds Braunstein, J. & O’Brien, G. D.), pp. 145–61. American Association of Petroleum Geology, Memoir no. 8.Google Scholar
Mountney, N. P. 2006 a. Eolian facies models. In Facies Models Revisited (eds Walker, R. G. & Posamentier, H.), pp. 1983. SEPM, Memoir no. 84.CrossRefGoogle Scholar
Mountney, N. P. 2006 b. Periodic accumulation and destruction of aeolian erg sequences in the Permian Cedar Mesa Sandstone, White Canyon, southern Utah, USA. Sedimentology 53, 789823.Google Scholar
Mountney, N., Howell, J., Flint, S. & Jerram, D. 1999. Relating aeolian bounding-surface geometries to the bed forms that generated them: Etjo Formation, Cretaceous, Namibia. Geology 27,159–62.Google Scholar
Mountney, N. P. & Russell, A. J. 2009. Aeolian dune-field development in a water table-controlled system: Skeiđarársandur, Southern Iceland. Sedimentology 56, 2107–31.CrossRefGoogle Scholar
Muñoz, A., Arenas, C., González, A., Luzón, A., Pardo, G., Pérez, A. & Villena, J. 2002. Ebro Basin (northeastern Spain). In The Geology of Spain (eds Gibbons, W. & Moreno, T.), pp. 370–85. London: Geological Society.Google Scholar
Muñoz, A. & Casas, A. M. 1997. The Rioja Trough (N Spain): tectosedimentary evolution of a symmetric foreland basin. Basin Research 9, 6585.Google Scholar
Nemec, W. & Steel, R. J. 1988. Fan Deltas: Sedimentology and Tectonic Setting. Glasgow: Blakie.Google Scholar
Pardo, G., Arenas, C., González, A., Luzón, A., Muñoz, A., Pérez, A., Pérez Rivarés, F. J., Vázquez-Urbez, M. & Villena, J. 2004. La Cuenca del Ebro. In Geología de España (ed. Vera, J. A.), pp. 533–43. Madrid: IGME & Sociedad Geológica de España.Google Scholar
Pflug, R. 1973. El diapiro de Estella. Munibe-Sociedad de Ciencias Naturales Aranzadi 25, 171202.Google Scholar
Pueyo-Anchuela, O., Casas-Sainz, A. M., Soriano, M. A., Pocoví-Juan, A., Ipas-Lloréns, J. F. & Ansón-López, D. 2010. Integrated geophysical and building damages study of karst effects in the urban area of Alcalá de Ebro, Spain. Zeitschrift für Geomorphologie 54, 221–36.Google Scholar
Purdy, E. G. 1974. Karst-determined facies patterns in British Honduras: Holocene carbonate sedimentation model. AAPG Bulletin 58, 825–55.Google Scholar
Quirantes, J. 1978. Estudio Sedimentológico y Estratigráfico del Terciario Continental de los Monegros. Ph.D. thesis, Instituto Fernando el Católico (CSIC), Diputación Provincial de Zaragoza. Published thesis.Google Scholar
Riba, O. 1976. Syntectonic unconformities of the Alto Cardener, Spanish Pyrenees: a genetic interpretatio. Sedimentary Geology 15, 213–33.Google Scholar
Riba, O., Reguant, S. & Villena, J. 1983. Ensayo de síntesis estratigráfica y evolutiva de la Cuenca terciaria del Ebro. In Libro Jubilar J.M. Ríos, Geología de España (II) (ed. Comba, J. M.), pp. 131–59. Madrid: Instituto Geológico y Minero de España.Google Scholar
Rodríguez-López, J. P., de Boer, P. L., Meléndez, N., Soria, A. R. & Pardo, G. 2006. Windblown desert sands in coeval shallow marine deposits a key for the recognition of coastal ergs; mid-Cretaceous Iberian Basin, Spain. Terra Nova 18, 314–20.Google Scholar
Rodríguez-López, J. P., Meléndez, N., De Boer, P. L. & Soria, A. R. 2008. Aeolian sand sea development along the Mid-Cretaceous Western Tethyan Margin (Spain): erg sedimentology and palaeoclimate implications. Sedimentology 55, 1253–92.Google Scholar
Rust, B. R. 1978. A classification of alluvial channel systems. In Fluvial Sedimentology (ed. Miall, A. D.), pp. 187–98. Canadian Society of Petroleum Geology, Memoir no. 5.Google Scholar
Scherer, C. M. S. 2000. Eolian dunes of the Botucatu Formation (Cretaceous) in southernmost Brazil: morphology and origin. Sedimentary Geology 137, 6384.Google Scholar
Seilacher, A. 1969. Fault graded beds interpreted as seismites. Sedimentology 13, 155–59.Google Scholar
Seilacher, A. 1984. Sedimentary structures tentatively attributed to seismic events. Marine Geology 55, 12.Google Scholar
Shukla, U. K. 2009. Sedimentation model of gravel-dominated alluvial piedmont fan, Ganga Plain, India. International Journal of Earth Sciencies 98, 443–59.Google Scholar
Silva, P. G., López Recio, M., González Hernández, F. M., Tapias, F., Alarcón, A., Cuartero, F., Expósito, A., Lázaro, A., Manzano, I., Marín, D., Morín, J. & Yravedra, J. 2008. Datos geoarqueológicos de la terraza compleja del Manzanares entre el sector del 12 de Octubre y la desembocadura del arroyo Butarque (Villaverde, Madrid). Cuaternario y Geomorfología 22, 4770.Google Scholar
Simón, J. L. 1989. Late Cenozoic stress field and fracturing in the Iberian Chain and Ebro Basin (Spain). Journal of Structural Geology 11, 285–94.Google Scholar
Simón, J. L. 2006. El registro de la compresión intraplaca en los conglomerados de la cuenca terciaria de Aliaga (Teruel, Cordillera Ibérica). Revista de la Sociedad Geológica de España 19, 163–79.Google Scholar
Simón, J. L., Arlegui, L. E. & Liesa, C. L. 2008. Stress partitioning: a practical concept for analysing boundary conditions of brittle deformation. Geodinamica Acta 53, 1057–65.Google Scholar
Simón, J. L., Arlegui, L. E., Liesa, C. L. & Maestro, A. 1999. Stress perturbations registered by jointing near strike-slip, normal, and reverse faults: examples from the Ebro Basin, Spain. Journal of Geophysical Research (B7) 104, 15141–53.Google Scholar
Simón, J. L. & Soriano, M. A. 1985. Deformaciones cuaternarias en el area de Zaragoza. Actas I Reunión de Cuaternario Ibérico 329–343.Google Scholar
Simón, J. L. & Soriano, M. A. 1986. Diapiric deformations in the Quaternary deposits of the central Ebro basin, Spain. Geological Magazine 123, 4557.Google Scholar
Smith, N. D. 1974. Sedimentology and bar formation in the upper kicking horse river, a braided outwash stream. Journal of Geology 82, 205–23.Google Scholar
Smith, G. A. 1986. Coarse-grained nonmarine volcaniclastic sediment: terminology and depositional processes. Geological Society of America Bulletin 97, 110.Google Scholar
Soreghan, G. S., Soreghan, M. J., Sweet, D. E. & Moore, K. D. 2009. Hot fan or cold outwash? Hypothesized proglacial deposition in the upper Paleozoic cutler formation, western tropical Pangea. Journal of Sedimentary Research 79, 495522.Google Scholar
Soriano, M. A. 1990. Geomorfología del sector centro-meridional de la Depresión del Ebro 269 p. Ph.D. thesis, Instituto Fernando el Católico, Diputación Provincial de Zaragoza. Published thesis.Google Scholar
Soriano, M. A., Luzón, A., Yuste, A., Pocoví, A., Pérez, A., Simón, J. L. & Gil, H. 2012. Quaternary alluvial sinkholes: record of environmental conditions of karst development, examples from the Ebro Basin, Spain. Journal of Cave and Karst Studies 74, 173–85.Google Scholar
Soriano, M. A. & Simón, J. L. 1995. Alluvial dolines in the central Ebro Basin, Spain: a spatial and developmental hazard analysis. Geomorphology 11, 295309.Google Scholar
Soriano, M. A. & Simón, J. L. 2002. Subsidence rates and urban damages in alluvial dolines of the central Ebro Basin (NE Spain). Environmental Geology 42, 476–84.Google Scholar
Steel, R. J. & Thompson, D. B. 1983. Structures and textures in Triassic braided stream conglomerates (‘Bunter’ Pebble Beds) in the Sherwood Sandstone Group, N Staffordshire, England. Sedimentology 30, 341–67.CrossRefGoogle Scholar
Sweet, M. L. 1999. Interaction between aeolian, fluvial and playa environments in the Permian Upper Rotliegend Group, UK southern North Sea. Sedimentology 46, 171–87.Google Scholar
Tirsgaard, H. & Øxnevad, I. 1998. Preservation of pre-vegetational mixed fluvio-aeolian deposits in a humid climatic setting: an example from the Middle Proterozoic Eriksfjord Formation, Southwest Greenland. Sedimentary Geology 120, 295317.Google Scholar
van Vliet-Lanöe, B., Magyari, A. & Meilliez, F. 2004. Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Change 43, 103–27.Google Scholar
Veiga, G. D., Spalletti, L. A. & Flint, A. 2002. Aeolian/fluvial interactions and high-resolution sequence stratigraphy of a non-marine lowstand wedge: the Avilé Member of the Agrio Formation (Lower Cretaceous), central Neuquén Basin, Argentina. Sedimentology 49, 1001–19.Google Scholar
Vendeville, B. C. & Jackson, M. P. A. 1992. The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology 9, 331–53.Google Scholar
Visher, G. S. 1969. Grain size distribution and depositional processes. Journal of Sedimentary Petrology 39, 1074–106.Google Scholar
Waltham, T., Bell, F. & Culshaw, M. 2005. Sinkholes and Subsidence. Chichester: Springer, 382 pp.Google Scholar