Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T12:29:14.056Z Has data issue: false hasContentIssue false

Initial melting in alkali feldspar-plagioclase-quartz systems

Published online by Cambridge University Press:  01 May 2009

Daniel F. Weill
Affiliation:
Centre for Volcanology, University of Oregon, Eugene, Oregon 97403, U.S.A.
Albert H. Kudo
Affiliation:
Dept. of Geology, University of New Mexico, Albuquerque, New Mexico 87106, U.S.A.

Summary

The beginning of melting of mineral assemblages of alkali feldspar, plagioclase and quartz in the system Ab-Or-Q-An cannot be treated in terms of eutectic points in subsystems which are defined on the basis of the ratio Ab/ An. Such subsystems do not exhibit unique melting temperatures or unique compositions of the first liquid produced. It is shown theoretically and demonstrated experimentally that these three minerals may coexist with liquid over a considerable portion of the melting range.

Type
Articles
Copyright
Copyright © Cambridge University Press 1968

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brown, G. M. 1963. Melting relations of Tertiary granitic rocks in Skye and Rhum. Mineralog. Mag., 33, 533562.Google Scholar
Carmichael, I. S. E. 1963. The crystallization of feldspar in volcanic acid liquids. Q. Jl geol. Soc. Lond., 119, 95131.CrossRefGoogle Scholar
Ewart, A. & Stipp, J. J. (In press). Origin of the volcanic rocks of the central North Island, New Zealand, as indicated by a study of Sr87/Sr86 ratios, and Sr, Rb, K, U, and Th abundances. (Preprint available, Australian National University, Canberra.)Google Scholar
King, B. C. 1965. The nature and origin of migmatites: metasomatism or anatexis; In Controls of Metamorphism, ed. by Pitcher, and Flinn, , John Wiley & Sons.Google Scholar
Kleeman, A. W. 1965. The origin of granite magmas. J. geol. Soc. Aust., 12, 3552.CrossRefGoogle Scholar
Larsen, E. Jr. 1948. Batholith and associated rocks of Corona, Elsinore, and San Luis Rey quadrangles, Southern California. Mem. geol. Soc. Am., 29.Google Scholar
McBirney, A. R. & Weill, D. F. 1966. Rhyolite magmas of Central America. Bull. Volcanol., 29, 435448.CrossRefGoogle Scholar
Steiner, A. 1963. Crystallization behaviour and origin of the acidic ignimbrite and rhyolite magma in the North Island of New Zealand. Bull. Volcanol., 25, 217243.CrossRefGoogle Scholar
Tuttle, O. F. & Bowen, N. L. 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Mem. geol. Soc. Am., 74.Google Scholar
Von Platen, H. 1965. Experimental anatexis and genesis of migmatites. In Controls of Metamorphism, ed. by Pitcher, and Flinn, , John Wiley & Sons.Google Scholar
Winkler, H. 1965. Petrogenesis of Metamorphic Rocks: Springer-Verlag.CrossRefGoogle Scholar
Winkler, H. & Von Platen, H. 1958. Experimentelle Gesteinsmetamorphose—II. Bildung von anatektischen granitischen Schmelzen bei der Metamorphose von NaCl-fuhrenden kalkfreien Tonen. Geochim. et Cosmoch. Acta, 15, 91.CrossRefGoogle Scholar
Winkler, H. & Von Platen, H. 1960. Experimentelle Gesteinsmetamorphose—III. Anatektische Ultrametamorphose kalkhaltiger Tone. Geochim. et Cosmoch. Acta, 18, 294.CrossRefGoogle Scholar
Winkler, H. & Von Platen, H. 1961a. Experimentelle Gesteinsmetamorphose—IV. Bildung anatektischer Schmelzen aus metamorphisierten Grauwacken. Geochim. et Cosmoch. Acta, 24, 48.CrossRefGoogle Scholar
Winkler, H. & Von Platen, H. 1961b. Experimentelle Gesteinsmetamorphose—V. Experimentelle anatektische Schmelzen und ihre petrogenetische Bedeutung. Geochim. et Cosmoch. Acta, 24, 250.CrossRefGoogle Scholar
Yoder, H., Stewart, D. & Smith, J. 1957. Ternary feldspars. Carnegie Instn Wash. Yr. bk., 56, 206214.Google Scholar