Hostname: page-component-cc8bf7c57-pd9xq Total loading time: 0 Render date: 2024-12-11T23:06:32.030Z Has data issue: false hasContentIssue false

Hydrothermal Melting of Shales*

Published online by Cambridge University Press:  01 May 2009

P. J. Wyllie
Affiliation:
College of Mineral Industries, The Pennsylvania State University.
O. F. Tuttle
Affiliation:
College of Mineral Industries, The Pennsylvania State University.

Abstract

PT curves for the beginning of melting of five analysed shales in the presence of water vapour under pressure are 20° C. to 40° C. higher than the corresponding curve for granite. About 150° C. above the beginning of melting, the shales are half-melted; this is higher than the liquidus curve of most granites. Refractive indices of the quenched liquids (1·495–1·505) indicate a granitic or granodioritic composition. Quartz, cordierite, mullite, hypersthene, anorthite, etc., are developed in the partially fused shales. Partial fusion of shales by a granitic magma, even if superheated, would produce a liquid no more basic than granodiorite. The chemical characteristics of the shales are compared with average igneous rocks, and there appears to be no possibility that fusion of shales could produce a basaltic magma. Complete fusion would produce a melt with composition distinct from normal igneous magmas.

Type
Articles
Copyright
Copyright © Cambridge University Press 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Now at the Department of Geology, University of Leeds.

*

Mineral Industries Experiment Station Contribution No. 59–99.

References

Bowen, N. L., 1928. The evolution of the igneous rocks. Princeton. (New Ed. Dover Publications, 1956.)Google Scholar
Bowen, N. L. and Auroussea, M., 1923. Fusion of sedimentary rocks in drill holes. Bull. Geol. Soc. Amer., 34, 431–48.CrossRefGoogle Scholar
Clarke, F. W., 1924. The data of geochemistry. U.S. Geol. Surv., Bull., 770.Google Scholar
George, W. O., 1924. The relation of the physical properties of natural glasses to their chemical composition. Journ. Geol., 32, 353372.CrossRefGoogle Scholar
Harker, R. I. and Tuttle, O. F., 1955. Studies in the system CaO-MgO-C02 Part I. The thermal dissociation of calcite, dolomite, and magnesite. Amer. Journ. Sci., 253, 209224.CrossRefGoogle Scholar
Knopf, A., 1938. Partial fusion of granodiorite by intrusive basalt, Owens Valley, California. Amer. Journ. Sci., 36, 373376.CrossRefGoogle Scholar
Nockolds, S. R., 1954. Average chemical compositions of some igneous rocks. Bull. Geol. Soc. Amer., 65, 10071032.CrossRefGoogle Scholar
Oftedahl, C., 1957. Igneous rock complex of the Oslo region. XV. Origin of composite dikes. Skrift. Det Norske Acad. Oslo, I. Mat.-Nat. Kl. No. 2, 117.Google Scholar
Rao, M. S., 1958. Composite and multiple intrusions of Lamalsh-Whiting Bay region, Arran. Geol. Mag., 95, 265280.Google Scholar
Thornton, C. P. and Tuttle, O. F., 1956. Applications of the Differentiation Index to petrologic problems (Abstr.). Bull. Geol. Soc. Amer., 67, 17381739.Google Scholar
Tilley, C. E., 1922. Density, refractivity and composition relations of some natural glasses. Miner. Mag., 19, 275294.Google Scholar
Tuttle, O. F., 1949. Two pressure vessels for silicate-water studies. Bull. Geol. Soc. Amer., 60, 17271729.CrossRefGoogle Scholar
Tuttle, O. F. and Bowen, N. L., 1958. Origin of granite in the light of experimental studies in the system NaAlSi3O8–KAlSi3O8–SiO2–H2O. Geol. Soc. Amer. Mem., 74.Google Scholar
Tuttle, O. F. and England, J. L., 1955. A preliminary report on the system SiO2-H2O. Bull. Geol. Soc. Amer., 66, 149152.CrossRefGoogle Scholar
Winkler, H. G. F., 1957. Experimented Gesteinsmetamorphose—I. Hydrothermale Metamorphose Karbonatfreier Tone. Geochim. Acta., 13, 4269.CrossRefGoogle Scholar
Winkler, H. G. F. and von Platen, H., 1958. Experimentelle Gesteinsmetamorphose—II. Bildung von anatektischen granitischen Schmelzen bei der Metamorphose von NaCl-führenden kalkfreien Tonen. Geochim. Acta., 15,91112.CrossRefGoogle Scholar
Winkler, H. G. F. 1960. Experimentelle Gesteinsmetamorphose—III. Anatektische Ultrametamorphose Kalkhaltiger Tonen. Geochim. Acta., 18, 294316.CrossRefGoogle Scholar
Wyllie, P. J., 1959. Microscopic cordierite in fused Torridonian arkose. Amer. Miner., 44, 10391046.Google Scholar
Wyllie, P. J. and Tuttle, O. F., 1958. Hydrothermal experiments on the melting temperatures of shales. (Abstr.) Trans. Amer. Geophys. Union, 39, 537.Google Scholar
Wyllie, P. J. 1960 a. The system CaO–CO2–H2O and its bearing on the origin of carbonatites. Journ. Petrology, 1, 146.CrossRefGoogle Scholar
Wyllie, P. J. 1960 b. Melting in the earth's crust. Proceedings of 21st Inter. Geol. Congress, Copenhagen. Part XVIII, 227–235.Google Scholar
Yoder, H. S. and Tilley, C. E., 1956. Natural tholeiite basalt-water system. Carnegie Inst. Washington, Year Book No. 55, 169171.Google Scholar
Wyart, J., and Sabatier, G., 1959. Transformation des sediments pelitiques a 800° C. sous une pression d'eau de 1800 bars et granitisation. Bull. Soc. franc. Min. Crist., 82, 201210.Google Scholar