Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T07:52:43.909Z Has data issue: false hasContentIssue false

Geological evolution of the Chalk Group in the northern Dutch North Sea: inversion, sedimentation and redeposition

Published online by Cambridge University Press:  22 August 2018

EVA VAN DER VOET*
Affiliation:
Department of Geology and Geochemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands Vlaamse Instelling voor Technologisch Onderzoek (VITO), Boeretang 200, BE-2400 Mol, Belgium Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Celestijnenlaan 200E, BE-3001 Leuven, Belgium
LEONORA HEIJNEN
Affiliation:
EBN B.V., Daalsesingel 1, 3511 SV Utrecht, The Netherlands
JOHN J. G. REIJMER
Affiliation:
Department of Geology and Geochemistry, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands College of Petroleum Engineering & Geosciences, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
*
Author for correspondence: [email protected] and [email protected]

Abstract

In contrast to the Norwegian and Danish sectors, where significant hydrocarbon reserves were found in chalk reservoirs, limited studies exist analysing the chalk evolution in the Dutch part of the North Sea. To provide a better understanding of this evolution, a tectono-sedimentary study of the Late Cretaceous to Early Palaeogene Chalk Group in the northern Dutch North Sea was performed, facilitated by a relatively new 3D seismic survey. Integrating seismic and biostratigraphic well data, seven chronostratigraphic units were mapped, allowing a reconstruction of intra-chalk geological events.

The southwestward thickening of the Turonian sequence is interpreted to result from tilting, and the absence of Coniacian and Santonian sediments in the western part of the study area is probably the result of non-deposition. Seismic truncations show evidence of a widespread inversion phase, the timing of which differs between the structural elements. It started at the end of the Campanian followed by a second pulse during the Maastrichtian, a new finding not reported before. After subsidence during the Maastrichtian and Danian, renewed inversion and erosion occurred at the end of the Danian. Halokinesis processes resulted in thickness variations of chalk units of different ages.

In summary, variations in sedimentation patterns in the northern Dutch North Sea relate to the Sub-Hercynian inversion phase during the Campanian and Maastrichtian, the Laramide inversion phase at the end of the Danian, and halokinesis processes. Additionally, the Late Cretaceous sea floor was characterized by erosion through contour bottom currents at different scales and resedimentation by slope failures.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderskouv, K., Damholt, T. & Surlyk, F. 2007. Late Maastrichtian chalk mounds, Stevns Klint, Denmark: combined physical and biogenic structures. Sedimentary Geology 200, 5772.CrossRefGoogle Scholar
Anderskouv, K. & Surlyk, F. 2011. Upper Cretaceous chalk facies and depositional history recorded in the Mona-1 core, Mona Ridge, Danish North Sea. Geological Survey of Denmark and Greenland Bulletin 25, 160.Google Scholar
Arfai, J., Jähne, F., Lutz, R., Franke, D., Gaedicke, C. & Kley, J. 2014. Late Palaeozoic to Early Cenozoic geological evolution of the northwestern German North Sea (Entenschnabel): new results and insights. Netherlands Journal of Geosciences 93, 147–74.CrossRefGoogle Scholar
Arfai, J., Lutz, R., Franke, D., Gaedicke, C. & Kley, J. 2016. Mass-transport deposits and reservoir quality of Upper Cretaceous Chalk within the German Central Graben, North Sea. International Journal of Earth Sciences 105, 797818.CrossRefGoogle Scholar
Back, S., Van Gent, H., Reuning, L., Grötsch, J., Niederau, J. & Kukla, P. 2011. 3D geomorphology and sedimentology of the Chalk Group, southern Danish North Sea. Journal of the Geological Society, London 168, 393405.CrossRefGoogle Scholar
Bramwell, N. P., Caillet, G., Meciani, L., Judge, N., Green, M. & Adam, P. 1999. Chalk exploration, the search for a subtle trap. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (eds Fleet, A. J. & Boldy, S. A. R.), pp. 911–37. London: Geological Society.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L. & Fan, J.-X. 2013; updated. The ICS International Chronostratigraphic Chart. Episodes 36, 199204.Google Scholar
Coward, M. P., Dewey, J. F., Hempton, M. & Holroyd, J. 2003. Regional tectonics. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Evans, D., Graham, C., Armour, A. & Bathurst, P.), pp. 1733. London: Geological Society.Google Scholar
Deckers, J. 2015. The Paleocene stratigraphic records in the Central Netherlands and close surrounding basins: Highlighting the different responses to a late Danian change in stress regime within the Central European Basin Systems. Tectonophysics 659, 102–8.Google Scholar
Deckers, J. & Van der Voet, E. 2018. A review on the structural styles of deformation during Late Cretaceous and Paleocene tectonic phases in the southern North Sea area. Journal of Geodynamics 115, 19.CrossRefGoogle Scholar
Deegan, C. E. & Scull, B. J. 1977. A standard lithostratigraphic nomenclature for the Central and Northern North Sea. Institute of Geological Science Report 77/25; NPD-Bulletin No. 1.Google Scholar
De Jager, J. 2007. Geological development. In Geology of the Netherlands (eds Wong, T. E., Batjes, D. A. J. & de Jager, J.), pp. 526. Amsterdam: Royal Netherlands Academy of Arts and Sciences.Google Scholar
Errat, D., Thomas, G. M. & Wall, G. R. T. 1999. The evolution of the Central North Sea Rift. In Petroleum Geology of Northwest Europe: Proceedings of the 5th Conference (eds Fleet, A. J. & Boldy, S. A. R.), pp. 6382. London: Geological Society.Google Scholar
Esmerode, E. V., Lykke-Andersen, H. & Surlyk, F. 2007. Ridge and valley systems in the Upper Cretaceous chalk of the Danish Basin: contourites in an epeiric sea. In Economic and Palaeoceanographic Significance of Contourite Deposits (eds Vianna, A. R. & Rebesco, M.), pp. 265–82. Geological Society of London, Special Publication no. 276.Google Scholar
Esmerode, E. V., Lykke-Andersen, H. & Surlyk, F. 2008. Interaction between bottom currents and slope failure in the Late Cretaceous of the southern Danish Central Graben, North Sea. Journal of the Geological Society, London 165, 5572.CrossRefGoogle Scholar
Evans, D. J. & Hopson, P. M. 2000. The seismic expression of synsedimentary channel features within the Chalk of southern England. Proceedings of the Geologists’ Association 111, 219–30.CrossRefGoogle Scholar
Evans, D. J., Hopson, P. M., Kirby, G. A. & Bristow, C. R. 2003. The development and seismic expression of synsedimentary features within the Chalk of southern England. Journal of the Geological Society, London 160, 797813.CrossRefGoogle Scholar
Faugères, J.-C., Stow, D. A. V., Imbert, P. & Viana, A. 1999. Seismic features diagnostic of contourite drifts. Marine Geology 162, 138.CrossRefGoogle Scholar
Fritsen, A. (ed.) 1999. A Joint Chalk Stratigraphic Framework. Volume 1. Joint Chalk Research Program Phase V. NPD Publication Y558. Stavanger: Norwegian Petroleum Directorate.Google Scholar
Gale, A., Anderskouv, K., Surlyk, F. & Whalley, J. 2015. Slope failure of chalk channel margins: implications of an Upper Cretaceous mass transport complex, southern England. Journal of the Geological Society 172, 763–76.CrossRefGoogle Scholar
Gautier, D. L. & Klett, T. R. 2005. Reserve growth in chalk fields of the North Sea. Geological Society, London, Petroleum Geology Conference series 6, 169– 75.CrossRefGoogle Scholar
Gennaro, M. & Wonham, J. P. 2014. Channel development in the chalk of the Tor Formation, North Sea: evidence of bottom current activity. In From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin (eds Martinius, A. W., Howell, J. A., Steel, R. J. and Wonham, J. P.), pp. 551–86. International Association of Sedimentologists, Special Publication no. 46.Google Scholar
Gennaro, M., Wonham, J. P., Gawthorpe, R. & Saelen, G. 2013. Seismic stratigraphy of the Chalk Group in the Norwegian Central Graben, North Sea. Marine and Petroleum Geology 45, 236–66.CrossRefGoogle Scholar
Hancock, J. M. 1975. The petrology of the Chalk. Proceedings of the Geologists’ Association 86, 499535.CrossRefGoogle Scholar
Hancock, J. M. & Scholle, P. A. 1975. Chalk of the North Sea. In Petroleum and the Continental Shelf of NW Europe. Vol. I. Geology (ed. Woodland, A. W.), pp. 413–27. Barking: Applied Science Publishers, 413–27.Google Scholar
Herngreen, G. F. W. & Wong, Th. E. 2007. Cretaceous. In Geology of the Netherlands (eds Wong, T. E., Batjes, D. A. J. & de Jager, J.), pp. 127–50. Amsterdam: Royal Netherlands Academy of Arts and Sciences.Google Scholar
Kennedy, W. J. 1980. Aspects of Chalk sedimentation in the Southern Norwegian Offshore. In Proceedings of Symposium: The Sedimentation of North Sea Reservoir Rocks. Norwegian Petroleum Society, Geilo, 29 pp.Google Scholar
Kennedy, W. J. 1987a. Late Cretaceous and Early Palaeocene Chalk Group sedimentation in the greater Ekofisk area, North Sea Central Graben. Bulletin des Centres de Recherches Exploration-Production Elf-Acquitaine 11, 91126.Google Scholar
Kennedy, W. J. 1987b. Sedimentology of Late Cretaceous–Palaeocene chalk reservoir, North Sea Central Graben. In Petroleum Geology of North West Europe. (eds Brooks, J.. & Glennie, K. W.), pp. 469–81. London: Graham & Trotman.Google Scholar
Klinkby, L., Kristensen, L., Nielsen, E. B., Zinck-Jørgensen, K. & Stemmerik, L. 2005. Mapping and characterization of thin chalk reservoirs using data integration: the Kraka Field, Danish North Sea. Petroleum Geoscience 11, 113–24.CrossRefGoogle Scholar
Kockel, F. 1995. Structural and palaeogeographical development of the German North Sea sector. Beiträge zur Regionalen Geologie der Erde 26, Gebruder Borntraeger (Berlin), 96 pp.Google Scholar
Kombrink, H., Doornenbal, J. C., Duin, E. J. T., Den Dulk, M., Ten Veen, J. H., & Witmans, N. 2012. New insights into the geological structure of the Netherlands; results of a detailed mapping project. Netherlands Journal of Geosciences / Geologie en Mijnbouw 91, 419–46.CrossRefGoogle Scholar
Kristensen, L., Dons, T., Gunn Maver, K. & Schiøler, P. 1995. A multidisciplinary approach to reservoir subdivision of the Maastrichian Chalk in the Dan Field, Danish North Sea. American Association of Petroleum Geologists Bulletin 79 (11), 1650–60.Google Scholar
Larsen, C., Ineson, J. & Boldreel, L. O. 2014. Seismic stratigraphy and sedimentary architecture of the Chalk Group in south-west Denmark. Geological Survey of Denmark and Greenland Bulletin 31, 23–6.Google Scholar
Lykke-Andersen, H. & Surlyk, F. 2004. The Cretaceous–Palaeogene boundary at Stevns Klint, Denmark: inversion tectonics or sea-floor topography? Journal of the Geological Society, London 161, 343–52.CrossRefGoogle Scholar
Masoumi, S., Reuning, L., Back, S., Sandrin, A. & Kukla, P. A. 2014. Buried pockmarks on the Top Chalk surface of the Danish North Sea and their potential significance for interpreting palaeocirculations patterns. International Journal of Earth Sciences (Geologische Rundschau) 103, 563–78.CrossRefGoogle Scholar
Megson, J. B. 1992. The North Sea Chalk Play: examples from the Danish Central Graben. In Exploration Britain: Geological Insights for the Next Decade (ed. Hardman, R. F. P.), pp. 248–82. Geological Society, London, Special Publication no. 67.Google Scholar
Megson, J. B. & Hardman, R. 2001. Exploration for and development of hydrocarbons in the Chalk of the North Sea: a low permeability system. Petroleum Geoscience 7, 312.CrossRefGoogle Scholar
Megson, J. B. & Tygesen, T. 2005. The North Sea Chalk: an underexplored and underdeveloped play. In Petroleum Geology: North-West Europe and Global Perspectives – Proceedings of the 6th Petroleum Geology Conference (eds Doré, A. G. & Vining, B. A.), pp. 159–68. London: Geological Society.Google Scholar
Mort, H. P., Adatte, T., Föllmi, K. B., Keller, G., Steinmann, P., Matera, V., Berner, Z. & Stüben, D. 2007. Phosphorus and the roles of productivity and nutrient recycling during oceanic anoxic event 2. Geology 35 (6), 483–6.CrossRefGoogle Scholar
Mortimore, R. 2010. A chalk revolution: what have we done to the Chalk of England? Proceedings of the Geologists’ Association 122, 232–97.CrossRefGoogle Scholar
Olsen, J. C. 1987. Tectonic evolution of the North Sea region. In Petroleum Geology of North West Europe – Proceedings of the 3rd Conference (eds Brooks, J. & Glennie, K.), pp. 389401. London: Geological Society.Google Scholar
Remmelts, G. 1996. Salt tectonics in the southern North Sea, the Netherlands. In Geology of Gas and Oil under the Netherlands (eds Rondeel, H. E., Batjes, D. A. J. & Nieuwenhuijs, W. H.), 143–58. Dordrecht: KNMG, Kluwer.CrossRefGoogle Scholar
Schlanger, S. O. & Jenkyns, H. C. 1976. Cretaceous anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179–84.Google Scholar
Surlyk, F., Damholt, T. & Bjerager, M. 2006. Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous–Tertiary boundary and lower Danian bryozoan mound complex. Bulletin of the Geological Society of Denmark 54, 148.Google Scholar
Surlyk, F., Dons, T., Clausen, C. K. & Higham, J. 2003. Upper Cretaceous. In The Millennium Atlas: Petroleum Geology of the Central and Northern North Sea (eds Evans, D., Graham, C., Armour, A. & Bathurst, P.). London: Geological Society, 213–33.Google Scholar
Surlyk, F., Jensen, S. K. & Engkilde, M. 2008. Deep channels in the Cenomanian-Danian Chalk Group of the German North Sea sector: evidence of strong constructional and erosional bottom currents and effect on reservoir quality distribution. American Association of Petroleum Geologists Bulletin 92 (11), 1565–86.CrossRefGoogle Scholar
Surlyk, F. & Lykke-Andersen, H. 2007. Contourite drifts, moats and channels in the Upper Cretaceous chalk of the Danish Basin. Sedimentology 54, 405– 22.CrossRefGoogle Scholar
Ten Veen, J. H., Van Gessel, S. F. & Den Dulk, M. 2012. Thin- and thick-skinned salt tectonics in the Netherlands; a quantitative approach. Netherlands Journal of Geosciences 91, 447–64.CrossRefGoogle Scholar
Turgeon, S. C. & Creaser, R. A. 2008. Cretaceous oceanic anoxic event 2 triggered by a massive magmatic episode. Nature 454, 323–6.CrossRefGoogle ScholarPubMed
Van Adrichem Boogaert, H. A. & Kouwe, W. F. P. 1994. Chalk Group. In Stratigraphic Nomenclature of the Netherlands. Haarlem: Geological Survey of the Netherlands.Google Scholar
Van Buchem, F. S. P., Smit, F. W. H., Buijs, G. J. H., Trudgill, B. & Larsen, P. H. 2017. Tectonostratigraphic framework and depositional history of the Cretaceous-Danian succession of the Danish Central Graben (North Sea) – new light on a mature area. Geological Society, London, Petroleum Geology Conference series, 8.Google Scholar
Van Der Molen, A. S. 2004. Sedimentary development, seismic stratigraphy and burial compaction of the Chalk Group in the Netherlands North Sea area. Ph.D. thesis, Utrecht University, Utrecht, the Netherlands. Published thesis.Google Scholar
Van Der Molen, A. S., Dudok Van Heel, H. W. & Wong, T. E. 2005. The influence of tectonic regime on chalk deposition: examples of the sedimentary development and 3D-seismic stratigraphy of the Chalk Group in the Netherlands offshore area. Basin Research 17, 6381.CrossRefGoogle Scholar
Van Hoorn, B. 1987. Structural evolution, timing and tectonic style of the Sole Pit inversion. Tectonophysics 137, 239–84.CrossRefGoogle Scholar
Van Wijhe, D. H. 1987. Structural evolution of inverted basins in the Dutch offshore. Tectonophysics 137, 171219.CrossRefGoogle Scholar
Van Winden, M., De Jager, J., Jaarsma, B. & Bouroullec, R. 2018. New insights into salt tectonics in the northern Dutch offshore: a framework for hydrocarbon exploration. In Mesozoic Resource Potential in the Southern Permian Basin (eds Kilhams, B., Kukla, P. A., Mazur, S., McKie, T., Mijnlieff, H. & van Ojik, K.). Geological Society of London, Special Publication no. 469.Google Scholar
Vejbæk, O. V. & Andersen, C. 2002. Post mid-Cretaceous inversion tectonics in the Danish Central Graben – regionally synchronous tectonic events? Bulletin of the Geological Society of Denmark 49, 129–44.Google Scholar
Ziegler, P. A. 1990. Geological Atlas of Western and Central Europe (2nd edition). The Hague: Shell Internationale Petroleum Maatschappij B.V.; Bath: Geological Society Publishing House.Google Scholar