Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T07:53:54.811Z Has data issue: false hasContentIssue false

Geochronology, geochemistry, and geological implications of late Carboniferous – early Permian mafic and felsic intrusive rocks from Urad Zhongqi, western Inner Mongolia

Published online by Cambridge University Press:  27 April 2015

YINGDE WANG
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
FENGYUE SUN*
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
LIANG LI
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
RUIHUA LI
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
JIAN WANG
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
WEI XIN
Affiliation:
College of Earth Sciences, Jilin University, 2199 Jianshe Street, Changchun 130061, PR China
*
*Author for correspondence: [email protected]

Abstract

The mafic and felsic Haertaolegai intrusions crop out in Urad Zhongqi, western Inner Mongolia and are dominated by monzogranite, porphyritic granite, and gabbroic diorite intrusions. We investigate the tectonic setting, geochronology, and anorogenic characteristics of the western Inner Mongolia through field investigation, microscopic and geochemical analyses of samples from the Haertaolegai bimodal intrusions and laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) zircon U–Pb dating of gabbroic diorite and adakitic granites. Petrographic and geochemical studies of the bimodal intrusions indicate that the gabbroic diorites formed from a primary magma generated by the partial melting of lithospheric mantle material that had previously been modified by subduction-related fluids. The felsic rocks are high-K calc-alkaline and metaluminous, have characteristics of adakitic rocks and were generated during the partial melting of juvenile crustal material. Zircon U–Pb dating indicates that the felsic portion of this pluton was emplaced during late Carboniferous – early Permian time, with the mafic portion of the pluton emplaced during early Permian time. The zircons of adamellites have ɛHf(t) values and TDM2 ages of +1.0 to +2.7 and 1032–1128 Ma, respectively, suggesting that they formed from magmas generated by partial melting of juvenile Mesoproterozoic lower crust. These data, combined with the geology of the region, indicate that the late Carboniferous – early Permian bimodal intrusive rocks in western Inner Mongolia record a transitional period from collisional compression to post-collisional extension. These results indicate that the Paleo-Asian Ocean in western Inner Mongolia closed before 300 Ma.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, N., Arai, S. & Yurimoto, H. 1998. Geochemical characteristics of the uppermost mantle beneath the Japan island arcs: Implications for upper mantle evolution. Physics of the Earth and Planetary Interiors 107, 233–48.CrossRefGoogle Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.CrossRefGoogle Scholar
Badarch, G., Cunningham, W. D. & Windley, B. F. 2002. A new terrane subdivision for Mongolia: implications for the Phanerozoic crustal growth of Central Asia. Journal of Asian Earth Sciences 21, 87104.CrossRefGoogle Scholar
Blichert-Toft, J., Chauvel, C. & Albarède, F. 1997. Separation of Hf and Lu for high-precision isotope analysis of rock samples by magnetic sector-multiple collector ICP-MS. Contributions to Mineralogy and Petrology 127, 248–60.Google Scholar
Boynton, W. V. 1984. Geochemistry of the rare earth elements: meteorite studies. In Rare Earth Element Geochemistry (ed. Henderson, P.), pp. 63114. Amsterdam: Elsevier.Google Scholar
Castillo, P. R., Janney, P. E. & Solidum, R. U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.Google Scholar
Chen, B., Jahn, B. M. & Tian, W. 2009. Evolution of the Solonker suture zone: constraints from zircon U–Pb ages, Hf isotopic ratios and whole-rock Nd–Sr isotope compositions of subduction- and collision-related magmas and forearc sediments. Journal of Asian Earth Sciences 34, 245–57.Google Scholar
Chen, B., Jahn, B. M., Wilde, S. & Xu, B. 2000. Two contrasting Paleozoic magmatic belts in northern Inner Mongolia, China: petrogenesis and tectonic implications. Tectonophysics 328, 157–82.CrossRefGoogle Scholar
Chen, L. H. & Zhou, X. H. 2004. Ultramafic xenoliths in Mesozoic diorite in West Shan Dong Province. Science in China (Series D) 47 (6), 489–99.Google Scholar
Davis, G. A., Zheng, Y., Wang, C., Darby, B. J., Zhang, C. & Gehrels, G. E. 2001. Mesozoic tectonic evolution of the Yanshan Fold and Thrust Belt, with emphasis on Hebei and Liaoning provinces, Northern China. In Paleozoic and Mesozoic Tectonic Evolution of Central and Eastern Asia: From Continental Assembly to Intracontinental Deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 171–97. Geological Society of America, Memoir no. 194.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.CrossRefGoogle Scholar
Dong, Y. P., Liu, X. M., Santosh, M., Chen, Q., Zhang, X. N., Li, W., He, D. F. & Zhang, G. W. 2012. Neoproterozoic accretionary tectonics along the northwestern margin of the Yangtze Block, China: Constraints from zircon U–Pb geochronology and geochemistry. Precambrian Research 196–197, 247–74.Google Scholar
Eiler, J. M., Crawford, A., Elliott, T., Farley, K. A., Valley, J. W. & Stolper, E. M. 2000. Oxygen isotope geochemistry of oceanic arc lavas. Journal of Petrology 41 (2), 229–56.CrossRefGoogle Scholar
Fisher, C. M., Vervoort, J. D. & Hanchar, J. M. 2014. Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. Chemical Geology 363, 125–33.Google Scholar
Foley, S., Tiepolo, M. & Vannucci, R. 2002. Growth of early continental crust controlled by melting of amphibolite in subduction zones. Nature 417, 837–40.Google Scholar
Frey, F. A. & Prinz, M. 1978. Ultramafic inclusions from San Carlos, Arizona: petrologic and geochemical data bearing on their petrogenesis. Earth and Planetary Science Letters 38, 129–76.CrossRefGoogle Scholar
Gao, J., Klemd, R., Long, L. L., Xiong, X. M. & Qian, Q. 2009. Adakitic signature formed by fractional crystallization: an interpretation for the Neo-Proterozoic meta-plagiogranites of the NE Jiangxi ophiolitic melange belt, South China. Lithos 110, 277–93.Google Scholar
Gao, S., Luo, T. C., Zhang, B. R., Zhang, H. F., Han, Y. W., Zhao, Z. D. & Hu, Y. K. 1998. Chemical composition of the continental crust as revealed by studies in East China. Geochimica et Cosmochimica Acta 62, 1959–75.Google Scholar
Gao, S., Rudnick, R. L., Yuan, H. L., Liu, X. M., Liu, Y. S., Xu, W. L., Ling, W. L., Ayers, J., Wang, X. C. & Wang, Q. H. 2004. Recycling lower continental crust in the North China craton. Nature 432 (7019), 892–7.Google Scholar
Grove, T. L., Elkins Tanton, L. T., Parman, S. W., Cartterjee, N., Muntener, O. & Gaetani, G. A. 2003. Fractional crystallization and mantle melting controls on calk-alkaline differentiation trends. Contributions to Mineralogy and Petrology 145 (5), 515–33.Google Scholar
Heubeck, C. 2001. Assembly of central Asia during the middle and late Paleozoic. In Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intra Continental Deformation (eds Hendrix, M. S. & Davis, G. A.), pp. 122. Geological Society of America, Memoir no. 194.Google Scholar
Hofmann, A. W. 1988. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters 90, 297314.Google Scholar
Hong, D. W., Huang, H. Z., Xiao, Y. J., Xu, H. & Jin, M. 1994. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance. Acta Geological Sinica 68 (3), 219230 (in Chinese with English abstract).Google Scholar
Hong, D. W., Zhang, J. S., Wang, T., Wang, S. G. & Xie, X. L. 2004. Continental crustal growth and the supercontinental cycle: evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 23, 799813.Google Scholar
Hoskin, P. W. & Schaltegger, U. 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 2762.Google Scholar
Hu, Z. C., Liu, Y. S., Gao, S., Liu, W. G., Yang, L., Zhang, W., Tong, X. R., Lin, L., Zong, K. Q., Li, M., Chen, H. H. & Zhou, L. 2012. Improved in situ Hf isotope ratio analysis of zircon using newly designed X skimmer cone and jet sample cone in combination with the addition of nitrogen by laser ablation multiple collector ICP–MS. Journal of Analytical Atomic Spectrometry 27 (9), 1391–9.Google Scholar
Huang, F. A. & He, Y. S. 2010. Partial melting of the dry mafic continental crust: implications for petrogenesis of C-type adakites. Chinese Science Bulletin 55, 2428–39.Google Scholar
Irvine, T. H. & Baragar, W. R. A. 1971. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences 8 (5), 523–48.Google Scholar
Jahn, B. M. 2004. The Central Asian Orogenic Belt and growth of the continental crust in the Phanerozoic. In Aspects of the Tectonic Evolution of China (eds Malpas, J., Fletcher, C. J. N., Ali, J. R. & Aitchison, J. C.), pp. 73100. Geological Society of London, Special Publication no. 226.Google Scholar
Jahn, B. M., Litivnovsky, B. A., Zanvilevich, A. N. & Reichow, M. 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: evolution, petrogenesis and tectonic significance. Lithos 113, 521–39.CrossRefGoogle Scholar
Jahn, B. M., Wu, F. Y. & Chen, B. 2000. Granitoids of the Central Asian orogenic belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.Google Scholar
Jian, P., Liu, D. & Kröner, A. 2010. Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia. Lithos 118, 169–90.Google Scholar
Jian, P., Liu, D., Kröner, A., Windley, B. F., Shi, Y., Zhanf, F., Shi, G., Miao, L., Zhang, W., Zhang, Q., Zhang, L. & Ren, J. 2008. Time scale of an early to mid-Paleozoic orogenic cycle of the long-lived Central Asian Orogenic Belt, Inner Mongolia of China: implications for continental growth. Lithos 101, 233–59.Google Scholar
Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. & Wijbrans, J. 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109–20.CrossRefGoogle Scholar
Kay, R. W. & Kay, S. M. 1993. Delamination and delamination magmatism. Tectonophysics 219, 177–89.CrossRefGoogle Scholar
Kuster, D. & Harms, U. 1998. Post-collisional potassic granitoids from the southern and northwestern parts of the late Neo-proterozoic East African Orogen: A review. Lithos 45, 177–95.Google Scholar
Li, J. Y. 2006. Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences 26, 207–24.CrossRefGoogle Scholar
Li, P. W., Zhang, S. H., Gao, R., Li, H. Y., Zhao, Q. L., Li, Q. S. & Guan, Y. 2012. New Upper Carboniferous–Lower Permian paleomagnetic results from the central Inner Mongolia and their geological implications. Journal of Jilin University (Earth Sciences Edition) S1, 423–34 (in Chinese with English abstract).Google Scholar
Liu, Y. S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C. G. & Chen, H. H. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology 257, 3443.Google Scholar
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. & Chen, H. H. 2010. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55, 1535–46.Google Scholar
Ludwig, K. R. 2003. Isoplot/Ex, Version 3: A Geochronological Toolkit for Microsoft Excel. California: Geochronology Centre Berkeley.Google Scholar
Luo, H. L., Wu, T. R. & Li, Y. 2007. Geochemistry and SHRIMP dating of the Kebu massif from Wulatezhongqi, Inner Mongolia: evidence for the Early Permian underplating beneath the North China Craton. Acta Petrologica Sinica 23, 755–66 (in Chinese with English abstract).Google Scholar
Luo, H. L., Wu, T. R. & Zhao, L. 2009. Zircon SHRIMP U–Pb dating of Wuliangsitai A-type granite on the northern margin of the North China plate and tectonic significance. Acta Petrologica Sinica 25, 515–26 (in Chinese with English abstract).Google Scholar
Macpherson, C. G., Dreher, S. T. & Thirwall, M. F. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–93.Google Scholar
Maniar, P. D. & Piccoli, P. M. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin 101 (5), 635–43.Google Scholar
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–29.Google Scholar
Martin, H., Smith, R. H., Rapp, R., Moyen, J. F. & Champion, D. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanitoid: relationships and some implications for crustal evolution. Lithos 79, 124.Google Scholar
Miao, L., Fan, W., Liu, D., Zhang, F., Shi, Y. & Guo, F. 2008. Geochronology and geochemistry of the Hegenshan ophiolitic complex: Implications for late-stage tectonic evolution of the Inner Mongolia-Daxinganling Orogenic Belt, China. Journal of Asian Earth Sciences 32, 348–70.Google Scholar
Moyen, J. F. 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112, 556–74.CrossRefGoogle Scholar
Peccerillo, A. & Taylor, S. R. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology 58 (1), 6381.Google Scholar
Qu, X. M., Hou, Z. Q. & Li, Y. G. 2004. Melt components derived from a subducted slab in late orogenic ore-bearing porphyries in the Gangdese copper belt, southern Tibetan plateau. Lithos 74, 131–48.Google Scholar
Rapp, R. P. & Watson, E. B. 1995. Dehydration melting of metabasalt at 8–32Kbar: implications for continental growth and crust-mantle recycling. Journal of Petrology 36, 891931.Google Scholar
Rapp, R. P., Xiao, L. & Shimizu, N. 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica 18, 293302.Google Scholar
Rudnick, R. L. & Gao, S. 2003. Composition of the continental crust. Treatise in Geochemistry 3, 164.Google Scholar
Sajona, F. G., Maury, R. C., Pubellier, M., Leterrier, J., Bellon, H. & Cotton, J. 2000. Magmatic source enrichment by slab-derived melts in a young post-collision setting, central Mindanao(Philippines). Lithos 54 (3–4), 173206.Google Scholar
Şengör, A. M. C. & Natal’in, B. A. 1996. Paleotectonics of Asia: fragments of a synthesis. In The Tectonic Evolution of Asia (eds Yin, A. & Harrison, T. M.), pp. 486640. Cambridge, UK: Cambridge University Press.Google Scholar
Şengör, A. M. C., Natal’in, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Paleozoic crustal growth in Eurasia. Nature, 364, 299307.Google Scholar
Seo, J., Choi, S. G. & Oh, C. W. 2010. Petrology, geochemistry, and geochronology of the post-collisional Triassic mangerite and syenite in the Gwangcheon area, Hongseong Belt, South Korea. Gondwana Research 18, 479–96.Google Scholar
Shao, J. A. 1991. Crust Evolution in the Middle Part of the Northern Margin of Sino-Korean Plate. Beijing: Peking University Press, 136 pp. (in Chinese with English abstract).Google Scholar
Shi, G. H., Miao, L. C., Zhang, F. Q., Jian, P., Fan, W. M. & Liu, D. Y. 2004. The age and its regional tectonic implication of the Xilinhot A-type granites, Inner Mongolia. Chinese Science Bulletin 49, 384–9.Google Scholar
Smithies, R. H. 2000. The Archean tonalite–trondhjemite–granodiorite (TTG) series is not an analogue of Cenozoic adakite. Earth and Planetary Science Letters 182, 115–25.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313345. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, K. D. 1990. Tectonic development of Paleozoic fold belts at the north margin of the Sino–Korean craton. Tectonics 9, 249–60.Google Scholar
Tang, K. D. 1992. Tectonic Evolution and Minerogenetic Regularities of the Fold Belt along the Northern Margins of Sino-Korean Plate. Beijing: Peking University Press. 277 pp. (in Chinese with English abstract).Google Scholar
Tang, W. H., Zhang, Z. C., Li, J. F., Feng, Z. S. & Chen, C. 2011. Geochemistry of the Carboniferous volcanic rocks of Benbatu Formation in Sonid Youqi, Inner Mongolia and its geological significance. Acta Scientiarum Naturalium Universitatis Pekinensis 47, 321–30.Google Scholar
Taylor, S. R. & McLennan, S. 1995. The geochemical composition of the continental crust. Reviews of Geophysics 33, 241–65.Google Scholar
Wang, Q. & Liu, X. Y. 1986, Paleoplate tectonics between Cathaysia and Angaraland in Inner Mongolia of China. Tectonics 5, 1073–88.Google Scholar
Wang, Q., McDermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: Lower-crustal melting in an intracontinental setting. Geology 33 (6), 465–8.Google Scholar
Wang, Y. 1996. Tectonic Evolutional Processes of Inner Mongolia-Yanshan Orogenic Belt in Eastern China during the Late Paleozoic–Mesozoic. Beijing: Geological Publishing House (in Chinese).Google Scholar
Wareham, C. D., Millar, I. L. & Vaughan, A. P. M. 1997. The generation of sodic granitic magmas, western Palmer Land, Antarctic Peninsula. Contributions to Mineralogy and Petrology 128 (1), 8196.CrossRefGoogle Scholar
Wilson, W. 1989. Igneous Petrogenesis. London: Unwin Hyman, pp. 327–73.Google Scholar
Windley, B. F., Alexeiev, D., Xiao, W. J., Kröner, A. & Badarch, G. 2007. Tectonic models for accretion of the Central Asian Orogenic Belt. Journal of the Geological Society of London 164, 3147.Google Scholar
Xiao, W. J., Windley, B., Hao, J. & Zhai, M. G. 2003. Accretion leading to collision and the Permian Solonker suture, Inner Mongolia, China: termination of the Central Asian Orogenic Belt. Tectonics 22, 1069–89.Google Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J. L. 2009. End-Permian to mid-Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Science 98, 1189–287.Google Scholar
Xiong, X. L. 2006. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology 34, 945–8.Google Scholar
Xiong, X. L., Adam, J. & Green, T. H. 2005. Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt: implications for TTG genesis. Chemical Geology 218, 339–59.Google Scholar
Xu, B. & Charvet, J. 2010. Mid-Paleozoic opposite Orogenic Belt in Inner Mongolia of China and its significance for Central Asian Orogenic Belt. International Association for Gondwana Research Conference Series 9, Qingdao, China, Abstract Volume, p. 84.Google Scholar
Xu, B., Charvet, J., Chen, Y., Zhao, P. & Shi, G. Z. 2013. Middle Paleozoic convergent orogenic belts in western Inner Mongolia (China): Framework, kinematics, geochronology and implications for tectonic evolution of the Central Asian Orogenic Belt. Gondwana Research 23 (4), 1342–64.Google Scholar
Xu, B. & Chen, B. 1993. The opposite subduction and collision between the Siberian and Sino-Korean plates during the early-middle Paleozoic. Report No: 4 of the IGCP Project 283: Geodynamic Evolution of Paleoasian Ocean, Novosibirsk, USSR, pp. 148–50.Google Scholar
Xu, B. & Chen, B. 1997. Framework and evolution of the middle Paleozoic orogenic belt between Siberian and North China Plates in northern Inner Mongolia. Science in China, Series D 40, 463–9.Google Scholar
Xu, B., Liu, S. W., Wang, C. Q., Zheng, H. F. & Tian, F. 2000. Sm–Nd, Rb–Sr geochronology of the Baoyintu Group in northwestern Inner Mongolia. Geological Review 46, 8690.Google Scholar
Xu, B., Zhao, P., Bao, Q. Z., Zhou, Y. H., Wang, Y. Y. & Luo, Z. W. 2014. Preliminary study on the pre-Mesozoic tectonic unit division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica 30 (7), 1841–57 (in Chinese with English abstract).Google Scholar
Xu, J. F., Shinjio, R., Defant, M. J., Wang, Q. & Rapp, R. P. 2002. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: partial melting of delaminated lower continental crust? Geology 12, 1111–4.Google Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246 (3), 336–52.Google Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A. & Zhao, G. C. 2008. Petrogenesis and geodynamics of Late Archeanmagmatismin eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd–Hf isotopic evidence. Precambrian Research 167, 125–49.Google Scholar
Yang, J. S., Liu, F. L., Wu, C. L., Xu, Z. Q., Shi, R., Chen, S., Deloule, E. & Wooden, J. 2005. Two ultrahigh-pressure metamorphic events recognized in the central orogenic belt of China: evidence from the U–Pb dating of coesite-bearing zircons. International Geology Review 47, 323–43.Google Scholar
Yuan, H. L., Gao, S., Liu, X. M., Li, H. M., Gunther, D. & Wu, F. Y. 2004. Accurate U–Pb age and trace element determinations of zircon by laser ablation-inductively coupled plasma mass spectrometry. Geostandards Newsletter 28, 353–70.Google Scholar
Zhang, Q., Wang, Y., Qian, Q., Yang, J. H., Wang, Y. L., Zhao, T. P. & Guo, G. J. 2001. The characteristics and tectonic-metallogenic significances of the adakites in Yanshan Period from eastern China. Acta Petrologica Sinica 17 (2), 236–44 (in Chinese with English abstract).Google Scholar
Zhang, Q., Zhou, G. Q. & Wang, Y. 2003. The distribution of time and space of Chinese ophiolites, and tectonic settings. Acta Petrologica Sinica 19 (1), 18 (in Chinese with English abstract).Google Scholar
Zhang, W. & Jian, P. 2008. SHRIMP dating of Early Paleozoic granites from north Damaoqi, Inner Mongolia. Acta Geologica Sinica 82, 778–87 (in Chinese with English abstract).Google Scholar
Zhang, X. H., Mao, Q., Zhang, H. F., Zhai, M. G., Yang, Y. & Hu, Z. 2011 a. Mafic and felsic magma interaction during the construction of high-K calc-alkaline plutons within a metacratonic passive margin: the Early Permian Guyang batholith from the northern North China Craton. Lithos 125, 569–91.Google Scholar
Zhang, X. H., Wilde, S. A., Zhang, H. F. & Zhai, M. G. 2011 b. Early Permian high-K calcalkaline volcanic rocks from northwest Inner Mongolia, North China: geochemistry origin and tectonic implications. Journal of the Geological Society (London) 168, 153–71.Google Scholar
Zhang, X. H., Xue, F. H., Yuan, L. L., Ma, Y. G. & Wilde, S. A. 2012. Late Permian appinite–granite complex from northwestern Liaoning, North China craton: petrogenesis and tectonic implications. Lithos 155, 201–17.Google Scholar
Zhang, X. H., Yuan, L. L, Xue, F. H., Yan, X. & Mao, Q. 2014. Early Permian A-type granites from central Inner Mongolia, North China: magmatic tracer of post collisional tectonics and oceanic crustal recycling. Gondwana Research, published online 29 March 2014. doi: 10.1016/j.gr.2014.02.011.Google Scholar
Zhang, X. H., Zhang, H. F., Wilde, S. A., Yang, Y. H. & Chen, H. H. 2010. Late Permian to Early Triassic mafic to felsic intrusive rocks from North Liaoning, North China: petrogenesis and implication for Phanerozoic continental growth. Lithos 117, 283306.Google Scholar
Zhao, L., Wu, T. R. & Luo, H. L. 2011. SHRIMP U-Pb dating, geochemistry and tectonic implications of the Beiqigetao gabbros in Urad Zhongqi area, Inner Mongolia. Acta Petrologica Sinica 27 (10), 3071–82 (in Chinese with English abstract).Google Scholar
Zhao, P., Chen, Y., Xu, B., Faure, M., Shi, G. Z. & Choulet, F. 2013. Did the Paleo-Asian Ocean between North China Block and Mongolia Block exist during the Late Paleozoic? First paleomagnetic evidence from central-eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth 118, 1873–94.Google Scholar
Zhou, Z. G., Gu, Y. C., Liu, C. F., Yu, Y. S., Zhang, B., Tian, Z. J., He, P. B. & Wang, B. R. 2010. Discovery of early-middle Permian cathaysian flora Manduhubaolage area, Dong Ujinqin, Inner Mongolia, China and its geological significance. Geological Bulletin of China 28, 21–5.Google Scholar
Zhu, D. C., Zhao, Z. D., Pan, G. T., Lee, H. Y., Kang, Z. Q., Liao, Z. L., Wang, L. Q., Li, G. M., Dong, G. C. & Liu, B. 2008. Early Cretaceous subduction-related adakite-like rocks of the Gangdese belt, southern Tibet: productions of slab melting and subsequent melt–peridotite interaction? Journal of Asian Earth Sciences 34, 298309.Google Scholar