Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-20T05:40:18.683Z Has data issue: false hasContentIssue false

Geochronology and physical context of Oldowan site formation at Kanjera South, Kenya

Published online by Cambridge University Press:  12 September 2018

P. W. DITCHFIELD*
Affiliation:
Research Laboratory for Archaeology and the History of Art, School of Archaeology, University of Oxford, 1 South Parks Road, Oxford, OX1 3QY, UK
E. WHITFIELD
Affiliation:
Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
T. VINCENT
Affiliation:
Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
T. PLUMMER
Affiliation:
Department of Anthropology, Queens College, CUNY & NYCEP, 65-30 Kissena Blvd, Flushing, NY 11367, USA
D. BRAUN
Affiliation:
Department of Anthropology, Columbian College of Arts & Sciences, George Washington University, 2110 G Sreet, NW Washington DC 20052, USA
A. DEINO
Affiliation:
Berkeley Geochronology Center, 2455 Ridge Road, Berkeley CA 94709, USA
F. HERTEL
Affiliation:
Department of Biology, California State University, Northridge CA 91330, USA
J. S. OLIVER
Affiliation:
Department of Geosciences, Earth & Mineral Sciences Museum, Pennsylvania State University, 151 Standing Stone Lane, State College PA16802, USA
J. LOUYS
Affiliation:
Research Centre in Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, 4111, AU
L. C. BISHOP
Affiliation:
Natural Sciences and Psychology, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, UK
*
Author for correspondence: [email protected]

Abstract

Oldowan sites in primary geological context are rare in the archaeological record. Here we describe the depositional environment of Oldowan occurrences at Kanjera South, Kenya, based on field descriptions and granulometric analysis. Excavations have recovered a large Oldowan artefact sample as well as the oldest substantial sample of archaeological fauna. The deposits at Kanjera South consist of 30 m of fluvial, colluvial and lacustrine sediments. Magneto- and biostratigraphy indicate the Kanjera South Member of the Kanjera Formation was deposited during 2.3–1.92 Ma, with 2.0 Ma being a likely age for the archaeological occurrences. Oldowan artefacts and associated fauna were deposited in the colluvial and alluvial silts and sands of beds KS1–3, in the margins of a lake basin. Field descriptions and granulometric analysis of the sediment fine fraction indicate that sediments from within the main archaeological horizon were emplaced as a combination of tractional and hyperconcentrated flows with limited evidence of debris-flow deposition. This style of deposition is unlikely to significantly erode or disturb the underlying surface, and therefore promotes preservation of surface archaeological accumulations. Hominins were repeatedly attracted to the site locale, and rapid sedimentation, minimal bone weathering and an absence of bone or artefact rounding further indicate that fossils and artefacts were quickly buried.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amireh, B. S. 2015. Grain size analysis of the Lower Cambrian-Lower Cretaceous clastic sequence of Jordan: sedimentological and paleo-hydrodynamical implications. Journal of Asian Earth Sciences 97 (PA), 6788.CrossRefGoogle Scholar
Amit, R., Lekach, J., Ayalon, A., Porat, N. & Grodek, T. 2007. New insight into pedogenic processes in extremely arid environments and their paleoclimatic implications – the Negev Desert, Israel. Quaternary International 162–163, 6175.CrossRefGoogle Scholar
Behrensmeyer, A. K., Potts, R., Plummer, T. W., Tauxe, L., Opdyke, N. & Jorstad, T. 1995. The Pleistocene locality of Kanjera, Western Kenya: stratigraphy, chronology and paleoenvironments. Journal of Human Evolution 29, 247–74.CrossRefGoogle Scholar
Bement, L. C., Carter, B. J., Varney, R. A., Cummings, L. S. & Sudbury, J. B. 2007. Paleo-environmental reconstruction and bio-stratigraphy, Oklahoma Panhandle, USA. Quaternary International 169–170 (Special Issue), 3950.CrossRefGoogle Scholar
Bishop, L. C., Plummer, T. W., Ferraro, J. V., Braun, D., Ditchfield, P. W., Hertel, F., Kingston, J. D., Hicks, J. & Potts, R. 2006. Recent research into Oldowan hominin activities at Kanjera South, Western Kenya. African Archaeological Review 23 (1), 3140.CrossRefGoogle Scholar
Blair, T. C. 1999. Sedimentary processes and facies of the water laid Anvil Spring Canyon alluvial fan, Death Valley, California. Sedimentology 46 (5), 913–40.CrossRefGoogle Scholar
Blott, S. J. & Pye, K. 2001. Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26 (11), 1237–48.CrossRefGoogle Scholar
Blott, S. J., Croft, D. J., Pye, K., Saye, S. E. & Wilson, H. E. 2004. Particle size analysis by laser diffraction. In Forensic Geology: Principles, Techniques and Application (eds Pye, K. & Croft, D. J.), pp. 6373. Geological Society, London, Special Publication no. 232.Google Scholar
Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C. & Potts, R. 2008. Oldowan behavior and raw material transport: perspectives from the Kanjera Formation. Journal of Archaeological Science 35, 2329–45.CrossRefGoogle Scholar
Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P. & Bishop, L. C. 2009. Raw material quality and Oldowan hominin tool stone preferences: evidence from Kanjera South, Kenya. Journal of Archaeological Science 36, 1605–14.CrossRefGoogle Scholar
Clarke, D. W., Boyle, J. F., Chiverrell, R. C., Lario, J. & Plater, A. J. 2014. A sediment record of barrier estuary behaviour at the mesoscale: interpreting high-resolution particle size analysis. Geomorphology 221, 5168.CrossRefGoogle Scholar
Cooke, H. B. S. 2007. Stratigraphic variation in Suidae from the Shungura Formation and some coeval deposits. In Hominin Environments in the East African Pliocene (eds Bobe, R., Alemseged, Z. & Behrensmeyer, A. K.), pp. 107–27. Dordrecht: Springer.CrossRefGoogle Scholar
de Haas, T., Ventra, D., Carbonneau, P. E. & Kleinhans, M. G. 2014. Debris-flow dominance of alluvial fans masked by runoff reworking and weathering. Geomorphology 217, 165–81.CrossRefGoogle Scholar
de la Torre, I., Albert, R. M., Macphail, R., McHenry, L. J., Pante, M. C., Rodríguez-Cintas, Á., Stanistreet, I. G. & Stollhofen, H. 2018. The contexts and early Acheulean archaeology of the EF-HR paleo-landscape (Olduvai Gorge, Tanzania). Journal of Human Evolution 120, 274–97, https://doi.org/10.1016/j.jhevol.2017.06.012.CrossRefGoogle Scholar
Dill, H. G. & Ludwig, R. R. 2008. Geomorphological-sedimentological studies of landform types and modern placer deposits in the savanna (Southern Malawi). Ore Geology Reviews 33 (3–4), 411–34.CrossRefGoogle Scholar
Dinakaran, J. & Krishnayya, N. S. R. 2011. Variations in total organic carbon and grain size distribution in ephemeral river sediments in western India. International Journal of Sediment Research 26 (2), 239– 46.CrossRefGoogle Scholar
Ditchfield, P., Hicks, J., Plummer, T., Bishop, L. C. & Potts, R. 1999.Current research on the Late Pliocene and Pleistocene deposits north of Homa Mountain, southwestern Kenya. Journal of Human Evolution 36 (2), 123–50.CrossRefGoogle ScholarPubMed
Domınguez-Rodrigo, M. 2009. Are all Oldowan sites palimsests? If so, what can they tell us of hominid carnivory? In Interdisciplinary Approaches to the Oldowan (eds Hovers, E. & Braun, D. R.), pp. 129–48. Dordrecht: Springer.CrossRefGoogle Scholar
Ferraro, J. V. 2007. Broken bones and shattered stones: on the foraging ecology of Oldowan hominins. Published PhD thesis. University of California Los Angeles, Los Angeles, California. ProQuest 3317002.Google Scholar
Ferraro, J. V., Plummer, T. W., Pobiner, B. L., Oliver, J. S., Bishop, L. C., Braun, D. R., Ditchfield, P. W., Seaman, J. W., Binetti, K. W., Seaman, J. W. Jr., Hertel, F. & Potts, R. 2013. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8 (4), e62174.CrossRefGoogle ScholarPubMed
Friedman, G. M. 1979. Differences in size distributions of population particles among sands of various origins. Sedimentology 26 (6), 859–62.CrossRefGoogle Scholar
Gillies, J. A., Nickling, W. G. & McTainsh, G. H. 1996. Dust concentrations and particle-size characteristics of an intense dust haze event: Inland Delta region, Mali, West Africa. Atmospheric Environment 30 (7), 1081–90.Google Scholar
Guan, H., Zhu, C., Zhu, T., Wu, L. & Li, Y. 2016. Grain size, magnetic susceptibility and geochemical characteristics of the loess in the Chaohu lake basin: implications for the origin, palaeoclimatic change and provenance. Journal of Asian Earth Sciences 117, 170–83.CrossRefGoogle Scholar
Hassan, F. A. 1978. Sediments in archaeology: methods and implications for palaeoenvironmental and cultural analysis. Journal of Field Archaeology 5 (2), 197213.Google Scholar
Houben, P. 2007. Geomorphological facies reconstruction of Late Quaternary alluvia by the application of fluvial architecture concepts. Geomorphology 86 (1–2), 94114.CrossRefGoogle Scholar
Kent, P. E. 1942. The Pleistocene beds of Kanam and Kanjera, Kavirondo, Kenya. Geological Magazine 79, 117–32.CrossRefGoogle Scholar
Konert, M. & Vandenberghe, J. 1997. Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44 (3), 523–35.CrossRefGoogle Scholar
Le Bas, M. J. 1977. Carbonatite-Nephelinite Volcanism: An African Case History. London: Wiley.Google Scholar
Le Roux, J. P. & Rojas, E. M. 2007. Sediment transport patterns determined from grain size parameters: overview and state of the art. Sedimentary Geology 202 (3), 473–88.CrossRefGoogle Scholar
Leakey, L. S. B. 1935. The Stone Age Races of Kenya. Oxford: Oxford University Press.Google Scholar
Lekach, J., Amit, R., Grodek, T. & Schick, A. P. 1998. Fluvio-pedogenic processes in an ephemeral stream channel. Geomorphology 23 (2–4), 353–69.CrossRefGoogle Scholar
Lemorini, C., Plummer, T. W., Braun, D. R., Crittenden, A. N., Ditchfield, P. W., Bishop, L. C., Hertel, F., Oliver, J. S., Marlowe, F. W., Schoeninger, M. J. & Potts, R. 2014. Old stones’ song: use-wear experiments and analysis of the Oldowan quartz and quartzite assemblage from Kanjera South (Kenya). Journal of Human Evolution 72, 1025.CrossRefGoogle Scholar
Liu, B., Qu, J., Ning, D., Gao, Y., Zu, R. & An, Z. 2014. Grain-size study of aeolian sediments found east of Kumtagh Desert. Aeolian Research 13, 16.CrossRefGoogle Scholar
Oswald, F. 1914. The Miocene Beds of the Victoria Nyanza and the geology of the country between the lake and the Kisii Highlands. Quarterly Journal of the Geological Society of London 70, 128–88.Google Scholar
Pickford, M. 1984. Kenya Palaeontology Gazetteer, Western Kenya (Vol. 1). Nairobi, Kenya: National Museums of Kenya.Google Scholar
Pickford, M. 1987. The geology and palaeontology of the Kanam erosion gullies (Kenya). Mainzer Geowissenschaftliche Mitteilungen 16, 209–26.Google Scholar
Pierson, T. C. 2005. Hyperconcentrated flow – transitional process between water flow and debris flow. In Debris-Flow Hazards and Related Phenomena. Berlin, Heidelberg: Springer, pp. 159202.CrossRefGoogle Scholar
Plummer, T. W. 2004. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. American Journal of Physical Anthropology 125 (S39): 118–64.CrossRefGoogle Scholar
Plummer, T. W. & Bishop, L. C. 2016. Oldowan hominin behavior and ecology at Kanjera South, Kenya. Journal of Anthropological Sciences 94, 2940.Google ScholarPubMed
Plummer, T. W., Bishop, L. C., Ditchfield, P. & Hicks, J. 1999. Research on Late Pliocene Oldowan sites at Kanjera South, Kenya. Journal of Human Evolution 36 (2), 151–70.CrossRefGoogle Scholar
Plummer, T. W., Ditchfield, P. W., Bishop, L. C., Kingston, J. D., Ferraro, J. V., Braun, D. R., Hertel, F. & Potts, R. 2009. Oldest evidence of tool making hominins in a grassland-dominated ecosystem. PLoS ONE 4 (9), e7199.CrossRefGoogle Scholar
Plummer, T. W. & Potts, R. 1995. The hominid fossil sample from Kanjera, Kenya: description, provenance and implications of new and earlier discoveries. American Journal of Physical Anthropology 96, 723.CrossRefGoogle ScholarPubMed
Potts, R. 1991. Why the Oldowan? Plio-Pleistocene tool making and the transport of resources. Journal of Anthropological Research 47 (2), 153–76.CrossRefGoogle Scholar
Saggerson, E. P. 1952. Geology of the Kisumu District. Report 21. Nairobi: Geological Survey of Kenya, 86 pp.Google Scholar
Schillereff, D. N., Chiverrell, R. C., Macdonald, N. & Hooke, J. M. 2016. Hydrological thresholds and basin control over paleoflood records in lakes. Geology 44 (1), 43–6.CrossRefGoogle Scholar
Singer, B. S. 2014. A Quaternary geomagnetic instability time scale. Quaternary Geochronology 21 (c), 2952.CrossRefGoogle Scholar
Stanistreet, I. G. 2012. Fine resolution of early hominin time, Beds I and II, Olduvai Gorge, Tanzania. Journal of Human Evolution 63 (2), 300–8.CrossRefGoogle ScholarPubMed
Stanistreet, I. G., Stollhofen, H., Njau, J. K., Farrugia, P., Pante, M. C., Masao, F. T., Albert, R. M. & Bamford, M. K. 2018. Lahar inundated, modified, and preserved 1.88 Ma early hominin (OH24 and OH56) Olduvai DK site. Journal of Human Evolution 116, 2742.CrossRefGoogle ScholarPubMed
Vandenberghe, D. A. G., Derese, C. & Kasse, C. 2013. Late Weichselian (fluvio-) aeolian sediments and Holocene drift-sands of the classic type locality in Twente (E Netherlands): a high-resolution dating study using optically stimulated luminescence. Quaternary Science Reviews 68, 96113.CrossRefGoogle Scholar
Visher, G. S. 1969. Grain size distributions and depositional processes. Journal of Sedimentary Research 39 (3), 1074–106.Google Scholar
Wang, J., Li, A., Xu, K., Zheng, X. & Huang, J. 2015. Clay mineral and grain size studies of sediment provenances and paleoenvironment evolution in the middle Okinawa trough since 17ka. Marine Geology 366, 4961.CrossRefGoogle Scholar
Yin, Y., Liu, H., He, S., Zhao, F., Zhu, J., Wang, H., Liu, G. & Wu, X. 2011. Patterns of local and regional grain size distribution and their application to Holocene climate reconstruction in semi-arid Inner Mongolia, China. Palaeogeography, Palaeoclimatology, Palaeoecology 307 (1–4), 168–76.CrossRefGoogle Scholar
Supplementary material: File

Ditchfield et al. supplementary material

Appendix 1

Download Ditchfield et al. supplementary material(File)
File 129.6 KB