Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T11:58:03.077Z Has data issue: false hasContentIssue false

Geochemistry of the Sunnfjord Melange: sediment mixing from different sources during obduction of the Solund–Stavfjord Ophiolite Complex, Norwegian Caledonides

Published online by Cambridge University Press:  01 May 2009

Einar Alsaker
Affiliation:
Geologisk Institutt, Allegt. 41, 5007 Bergen, Norway
Harald Furnes
Affiliation:
Geologisk Institutt, Allegt. 41, 5007 Bergen, Norway

Abstract

The Sunnfjord Melange is a strongly tectonized sedimentary assemblage occurring tectonostratigraphically below the Solund–Stavfjord Ophiolite Complex of Ashgill age, and upon continental margin deposits of Wenlock or older age. The Sunnfjord Melange, which probably started to form within an oceanic transform fault, developed further during obduction of the Solund–Stavfjord Ophiolite Complex. The Sunnfjord Melange is divided into two units, the lower Øyravatn Unit of predominantly fine grained calcareous quartz-bearing chlorite–muscovite schists, and the upper Markavatn Unit, mainly metagreywackes. Both units contain blocks of metabasalts, marble and meta-arkose. Serpentinite blocks are restricted to the Markavatn Unit. The appearance of serpentinite detritus is marked by much higher contents of Cr and Ni in the metasediments of the Markavatn Unit than in those of the Øyravatn Unit. The geochemistry of the metasediments from the Øyravatn Unit and the Markavatn Unit is compatible with mixing of detritus from continental and ophiolitic sources. Despite the strong and pervasive deformation of the Sunnfjord Melange, its geochemical composition from the lowest to the highest tectonostratigraphic levels reflects that of the inverse pseudostratigraphy of the Solund–Stavfjord Ophiolite Complex. Thus, only metabasalts of the Solund–Stavfjord Complex and continental meta-arkoses yielded detritus to the schists of the Øyravatn Unit. The compositions of the schists and metagreywackes of the Markavatn Unit, on the other hand, show that a multicomponent detritus derived from metabasalt and serpentinite of the Solund–Stavfjord Ophiolite Complex, mixed with the detritus from continental meta-arkoses.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, T. B. & Jamtveit, B. 1990. Uplift of deep crust during orogenic extensional collapse: A model based on field studies in the Sogn-Sunnfjord region of western Norway. Tectonics 9, 10971111.CrossRefGoogle Scholar
Andersen, T. B., Skjerlie, K. P. & Furnes, H. 1990. The Sunnfjord Melange, evidence of Silurian ophiolite accretion in the west Norwegian Caledonides. Journal of the Geological Society 147, 5968.CrossRefGoogle Scholar
Argast, S. & Donnelly, T. W. 1987. The chemical discrimination of clastic sedimentary components. Journal of Sedimentary Petrology 57, 813–23.Google Scholar
Bailey, R. H., Skehan, J. W., Dreier, R. B. & Webster, M. J. 1989. Olistostomes of the Avalonian terrane of southeastern New England. In Melanges and Olistostromes of the Appalachians (eds Horton, J. W. and Rast, N.), pp. 93112. Geological Society of America, Special Publication no. 228.CrossRefGoogle Scholar
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–27.Google Scholar
Bhatia, M. R. & Crook, K. A. W. 1986. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–93.Google Scholar
Bhatia, M. R. & Taylor, S. R. 1981. Trace-element geochemistry and sedimentary provinces: a study from the Tasman Geosyncline, Australia. Chemical Geology 33, 115–25.Google Scholar
Bonatti, E. & Crane, K. 1982. Oscillatory spreading explanation of anomalously old uplifted crust near oceanic transforms. Nature 300, 343–45.CrossRefGoogle Scholar
Bonatti, E., Clocchiatti, R., Colantoni, P., Gelmini, R., Marinelli, G., Ottonello, G., Santacroce, R., Taviani, M., Abdel-Meguid, A. A., Assaf, H. S. & El Tahir, M. A. 1984. Zabargad (St. John's) Island: an uplifted fragment of sub-Red Sea lithosphere. Journal of the Geological Society, London 140, 677–90.CrossRefGoogle Scholar
Brekke, H. & Solberg, P. O. 1987. The geology of Atløy, Sunnfjord, western Norway. Norges Geolgiske Under søkelse 410, 7394.Google Scholar
Cann, J. R. 1969. Spilites from the Carlsberg Ridge, Indian Ocean. Journal of Petrology 10, 119.Google Scholar
Cann, J. R. 1970. Rb, Sr, Y, Zr and Nb in some ocean floor basaltic rocks. Earth and Planetary Science Letters 10, 710.Google Scholar
Cloos, M. 1984. Flow melanges and structural evolution of accretionary wedges. In Melanges: Their Nature, Origin, and Significance (ed. Raymond, L. A.), pp. 71–9. Geological Society of America Special Paper no. 198.CrossRefGoogle Scholar
Coish, R. A. 1977. Ocean floor metamorphism in the Betts Cove ophiolite, Newfoundland. Contributions to Mineralogy and Petrology 60, 255–70.Google Scholar
Crane, K. & Bonatti, E. 1987. The role of fracture zones during early Red Sea rifting: structural analysis using Space Shuttle radar and LANDSAT imagery. Journal of the Geological Society, London 144, 407–20.Google Scholar
Dunning, G. R. & Pedersen, R. B. 1988. U/Pb ages of ophiolites and arc-related plutons of the Norwegian Caledonides: implications for the development of Iapetus. Contributions to Mineralogy and Petrology 98, 1323.CrossRefGoogle Scholar
Edelman, S. H., Day, H. W., Moores, E. M., Zigan, S. M., Murphy, T. P. & Hacker, B. R. 1989. Structure across a Mesozoic ocean-continent suture zone in the northern Sierra Nevada, California. Geological Society of America, Special Paper No. 224, 56 pp.Google Scholar
Floyd, P. A. 1976. Geochemical variation in the greenstones of S.W. England. Journal of Petrology 17, 522–45.CrossRefGoogle Scholar
Frey, F. A., Bryan, W. B., Thompson, G. & Roy, S. 1973. Petrological and geochemical results for basalts from DSDP Legs 2 and 3. Transactions of the American Geophysical Union 54, 1004–6.Google Scholar
Furnes, H., Skjerlie, K. P., Pedersen, R. B., Andersen, T. B., Stillman, C. J., Suthren, R. J., Tysseland, M. & Garmann, L. B. 1990. The Solund-Stavfjord Ophiolite Complex and associated rocks, west Norwegian Caledonides: geology, geochemistry and tectonic environment. Geological Magazine 127, 209–24.CrossRefGoogle Scholar
Furnes, H., Johansen, R. J. & Skjerlie, K. P. 1992. FeTi-poor and FeTi-rich basalts in the Solund–Stavfjord Ophiolite Complex, west Norwegian Caledonides: relationship and genesis. Neues Jahrbuch für Mineralogie, Monatsheft H.4, 153–68.Google Scholar
Govindaraju, K. 1984. Compilation of working values and sample description for 170 international reference samples of mainly silicate rocks and minerals. Geo-standards Newsletter 8, Special July Issue.Google Scholar
Hart, R. A. 1970. Chemical exchange between sea water and deep ocean basalt. Earth and Planetary Science Letters 9, 269–79.CrossRefGoogle Scholar
Hart, S. R., Erlank, A. J. & Kable, E. J. D. 1974. Sea floor basalt alteration: some chemical and Sr-isotopic effects. Contributions to Mineralogy and Petrology 44, 219–30.CrossRefGoogle Scholar
Hart, S. R. & Nalwalk, A.J. 1970. K, Rb, Cs, and Sr relationships in submarine basalts from the Puerto Rico trench. Geochimica et Cosmochimica Acta 34, 145–55.Google Scholar
Henderson, P. 1982. Inorganic Geochemistry. 1st ed. Pergamon Press, 353 pp.Google Scholar
Hiscott, R. N. 1984. Ophiolite source rocks for Taconic-age flysch: trace element evidence. Geological Society of America Bulletin 95, 1261–7.2.0.CO;2>CrossRefGoogle Scholar
Humphris, S. E. & Thompson, G. 1978 a.Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta 42, 107–25.Google Scholar
Humphris, S. E. & Thompson, G. 1978 b. Trace element mobility during hydrothermal alteration of oceanic basalts. Geochimica el Cosmochimica Acta 42, 127–36.Google Scholar
Jones, G., Robertson, A. H. F. & Cann, J. R. 1991. Genesis and emplacement of the supre-subduction zone Pindos Ophiolite, Northwestern Greece. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds Peters, Tj., Nicolas, A. and Coleman, R. G.), pp. 771–99. Ministry of Petroleum and Minerals, Sultanate of Oman.CrossRefGoogle Scholar
Karson, J. & Dewey, J. F. 1978. Coastal Complex, western Newfoundland: an Early Ordovician fracture zone. Geological Society of America Bulletin 89, 1037–49.Google Scholar
Kolderup, N.-H. 1921. Der Mangeritsyenit und umgebende Gesteine zwischen Dalsfjord und Stavfjord in Søndfjord im westlichen Norwegen. Bergen Museum Årbock 1920–21, (5).Google Scholar
Larue, D. K. & Sampayo, M. M. 1990. Lithic-volcanic sandstones derived from oceanic crust in the Franciscan Complex of California: ‘sedimental memories’ of source rock geochemistry. Sedimentology 37, 879–89.CrossRefGoogle Scholar
Leitch, E. C. & Cawood, P. A. 1980. Olistoliths and debris flow deposits at ancient consuming plate margins: an eastern Australian example. Sedimentary Geology 25, 522.CrossRefGoogle Scholar
Ludden, J., Gelinas, L. & Trudel, P. 1982. Archean metavolcanics from Rouyn-Noranda district, Abitibi Greenstone Belt, Quebec. 2. Mobility of trace elements and petrogenetic constraints. Canadian Journal of Earth Science 19, 2276–87.Google Scholar
Malpas, J. 1979. The dynamofhermal aureole of the Bay of Islands ophiolite suite. Canadian Journal of Earth Science 16, 2086–101.CrossRefGoogle Scholar
Melson, W. G. 1973. Basaltic glasses from the Deep Sea Drilling Project. Chemical characteristics, composition and alteration products, and fission track ‘ages’. Transactions of the American Geophysical Union 54, 1011–14.Google Scholar
Miller, R. B. & Mogk, D. W. 1987. Ultramafic rocks of a fracture zone ophiolite, North Cascades, Washington, Tectonophysics 142, 261–89.CrossRefGoogle Scholar
Miyashiro, A. F., Shido, F. & Ewing, M. 1969. Diversity and origin of abyssal tholeiite from the Mid-Atlantic Ridge near 24° and 30° north latitude. Contributions to Mineralogy and Petrology 23, 3852.Google Scholar
Moseley, R. & Abbotts, I. L. 1979. The ophiolite melange of Masirah, Oman, Journal of the Geological Society 136, 713–24.CrossRefGoogle Scholar
Norrish, K. & Hutton, J. T. 1969. An accurate X-ray spectrographic method for the analysis of a wide range of geological samples. Geochimica et Cosmochimica Acta 33, 431–53.CrossRefGoogle Scholar
Pedersen, R. B. & Furnes, H. 1991. Geology, magmatic affinity and geotectonic environment of some Cale-donian ophiolites in Norway. Journal of Geodynamics 13, (2–4), 183203.Google Scholar
Pedersen, R. B., Bruton, D. L. & Furnes, H. 1992. Ordovician faunas, island arcs and ophiolites in the Scandinavian Caledonides. Terra Nova 4, 217–22.CrossRefGoogle Scholar
Pedersen, R. B. & Dunning, G. R. 1993. Provenance of turbiditic cover to the Caledonian Solund–Stavfjord ophiolite from U1–Pb single zircon dating. Journal of the Geological Society, London 150, 673–6.CrossRefGoogle Scholar
Pettuohn, F. J. 1975. Sedimentary Rocks. Harper & Row Publications, 628 pp.Google Scholar
Pickering, K. T., Hiscott, R. N. & Hein, F. J. 1989. Deep Marine Environments: Clastic Sedimentation and Tec-tonics. London: Unwin Hyman, 416 pp.Google Scholar
Raymond, L. A. 1984. Classification of melange. In Melanges: Their Nature, Origin and Significance (ed. Raymond, L. A.), pp. 720. Geological Society of America, Special Paper no. 198.Google Scholar
Robertson, A. H. F. 1977. The Moni Melange, Cyprus: an olistrostrome formed at a destructive plate margin. Journal of the Geological Society 133, 447–66.CrossRefGoogle Scholar
Robertson, A. H. F. & Woodcock, N. H. 1979. Mamonia Complex, southwest Cyprus: Evolution and emplacement of a Mesozoic continental margin. Geological Society of America Bulletin 90, 651–65.Google Scholar
Robertson, A. H. F. & Henderson, W. G. 1984. Geo-chemical evidence for the origins of igneous and sedimentary rocks of the Highland Border, Scotland. Transactions of the Royal Society of Edinburgh, Earth Science 75, 135–50.Google Scholar
Sadler, P. M. 1982. Bed-thickness and grain size of turbidites. Sedimentology 29, 3751.Google Scholar
Saleeby, J. B. 1984. Tectonic significance of serpentinite mobility and ophiolitic melange. Geological Society of America, Special Paper 198, 153–68.CrossRefGoogle Scholar
Sarwar, G. & DeJong, K. A. 1984. Composition and origin of the Kanar Melange, southern Pakistan. In Melanges: Their Nature, Origin and Significance (ed. Raymond, L. A.), pp. 127–37. Geological Society of America, Special Paper no. 198.Google Scholar
Searle, M. P. & Malpas, J. 1980. Structure and meta-morphism of rocks beneath the Semail ophiolite of Oman and their significance in ophiolite abduction. Transactions of the Royal Society of Edinburgh: Earth Sciences 71, 247–62.Google Scholar
Searle, M. P. & Malpas, J. 1982. Petrochemistry and origin of sub-ophiolitic metamorphic and related rocks in the Oman Mountains. Journal of the Geological Society, London 139, 235–48.Google Scholar
Searle, M. P. & Stevens, R. K. 1984. Obduction processes in ancient, modern and future ophiolites. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. and Shelton, A. W.), pp. 303–19. Geological Society of London, Special Publication no. 13.Google Scholar
Seyfried, W. E. Jr & Mottl, M. J. 1982. Hydrothermal alteration of basalt by seawater under seawater conditions. Geochimica et Cosmochimica Acta 46, 9851002.Google Scholar
Shervais, J. W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters 59, 101–18.CrossRefGoogle Scholar
Shido, F., Miyashiro, A. & Ewing, M. 1974. Compositional variations in pillow lavas from the Mid-Atlantic Ridge. Marine Geology 16, 177–90.Google Scholar
Skjerlie, F. J. 1969. The pre-Devonian rocks in the Askvoll–Gaular area and adjacent districts, Western Norway. Norges Geologiske Undersokelse 258, 325–59.Google Scholar
Skjerlie, K. P., Furnes, H. & Johansen, R. J. Magmatic development and tectonomagmatic models for the Solund–Stavfjord Ophiolite Complex, West Norwegian Caledonides. Lithos 23, 137–51.Google Scholar
Skjerlie, K. P. & Furnes, H. 1990. Evidence for a fossil transform fault in the Solund–Stavfjord Ophiolite Complex: west Norwegian Caledonides. Tectonics 9, 1631–48.Google Scholar
Swarbrick, R. E. 1980. The Mamonia complex of S.W. Cyprus: a Mesozoic continental margin and its relationship to the Troodos complex. Proceedings of the International Ophiolite Symposium, Nicosia 1979, 86101.Google Scholar
Staudigel, H. & Hart, S. R. 1983. Alteration of basaltic glass: mechanism and significance for the oceanic crust-seawater budget. Geochimica et Cosmochimica Acta 47, 3750.Google Scholar
Sturt, B. A. & Roberts, D. 1991. Tectonostratigraphic relationships and obduction histories of Scandinavian ophiolitic terranes. In Ophiolite Genesis and Evolution of the Oceanic Lithosphere (eds Peters, Tj., Nicolas, A. and Coleman, R. G.), pp. 745–69. Ministry of Petroleum and Minerals Sultanate of Oman.CrossRefGoogle Scholar
Thompson, G. 1973. A geochemical study of the low- temperature interaction of sea-water and oceanic igneous rocks. Transactions of the American Geophysical Union 54, 1015–19.Google Scholar
Wedepohl, K. H. 1969. Handbook of Geochemistry, vol. 1. Springer Verlag, 442 pp.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.Google Scholar
Wood, D. A., Gibson, I. L. & Thompson, R. N. 1976. Elemental mobility during zeolite facies metamorphism of the Tertiary basalts of Eastern Iceland. Contributions to Mineralogy and Petrology 55, 241–54.Google Scholar
Woodcock, N. H. & Robertson, A. H. F. 1984. The structural variety in Tethyan ophiolite terrains. In Ophiolites and Oceanic Lithosphere (eds Gass, I. G., Lippard, S. J. and Shelton, A. W.), pp. 321–30. Geological Society of London, Special Publication no. 13.Google Scholar