Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T08:17:23.116Z Has data issue: false hasContentIssue false

From obduction to continental collision: new data from Central Greece

Published online by Cambridge University Press:  11 January 2018

GIUSEPPE NIRTA*
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
GIOVANNA MORATTI
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, U.O di Firenze, Via La Pira 4, 50121, Firenze, Italy
LUIGI PICCARDI
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, U.O di Firenze, Via La Pira 4, 50121, Firenze, Italy
DOMENICO MONTANARI
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, U.O di Firenze, Via La Pira 4, 50121, Firenze, Italy
NICOLAOS CARRAS
Affiliation:
Institute of Geology and Mineral Exploration (IGME), Spirou Loui 1, 13677 Acharnes, Greece
RITA CATANZARITI
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, Via Moruzzi 1, 56124 Pisa, Italy
MARCO CHIARI
Affiliation:
C.N.R., Istituto di Geoscienze e Georisorse, U.O di Firenze, Via La Pira 4, 50121, Firenze, Italy
MARTA MARCUCCI
Affiliation:
Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, 50121, Firenze, Italy
*
Author for correspondence: [email protected]

Abstract

The aim of this paper is to contribute to deciphering the evolutionary history of the Hellenides by the study of a large sector of the chain located between the front of the ophiolitic units and the external zones classically attributed to the continental margin of Adria. In particular, the tectonic units located in Boeotia – a key area located in Central Greece at the boundary between the Internal and External Hellenides – were studied from structural, stratigraphic and biostratigraphic points of view. Addressing the main debated aspects concerning the origin of the ophiolite nappe(s), the tectonic evolution of the Hellenic orogen was revised with a particular emphasis on the period between obduction and continental collision. New findings were compared with consolidated data concerning the main metamorphic events recorded in the more Internal Hellenides, geochemistry and age of the ophiolites and main stratigraphic constraints obtained in other sectors of the belt. Finally, a new reconstruction of the tectonic evolution of this area was introduced and, in the context of the dispute concerning the origin of the ‘ophiolitic belts’ as a possible record of multiple oceanic basins, we put forward for consideration a ‘single ocean’ tectonic model spanning from Triassic up to Tertiary times, and valid for the whole Hellenic–Albanian sector.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agnini, C., Fornaciari, E., Raffi, I., Catanzariti, R., Pälike, H., Backman, J. & Rio, D. 2014. Biozonation and biochronology of Paleogene calcareous nannofossils from low and middle latitudes. Newsletter on Stratigraphy 47, 131–81.CrossRefGoogle Scholar
Ananiadis, G., Vakalas, I., Zelilidis, A. & Stoykova, K. 2004. Palaeographic evolution of Pindos basin during Paleogene using calcareous nannofossils. Bulletin of the Geological Society of Greece 36, 836–45.CrossRefGoogle Scholar
Anders, B., Reischmann, T., Poller, U. & Kostopoulos, D. 2005. Age and origin of granitic rocks of the eastern Vardar Zone, Greece: new constraints on the evolution of the Internal Hellenides. Journal of the Geological Society, London 162, 857–80.Google Scholar
Angelier, J. & Mechler, P. 1977. Sur une méthode graphique de recherche des contraintes principales également utilisable en tectonique et en sismologie: la méthode des dièdres droits. Bulletin de la Société géologique de France 19, 1309–18.CrossRefGoogle Scholar
Armijo, R., Meyer, B., Hubert, A. & Barka, A. 1999. Westward propagation of the North Anatolian fault into the northern Aegean: timing and kinematics. Geology 27, 267–70.Google Scholar
Armijo, R., Meyer, B., King, G. C. P., Rigo, A. & Papanastassiou, D. 1996. Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophysical Journal International 126, 1153.CrossRefGoogle Scholar
Aronis, G. 1955. Geographical distribution, geological placing and aspects on the genesis of the Greek bauxite. Bulletin of the Geological Society of Greece 2, 5579 (in Greek).Google Scholar
Aubouin, J. 1957. À propos de la Série du Pinde-Olonos. Essai de corrélations stratigraphiques dans le Pinde Méridional. Annales Géologiques des Pays Helléniques 8, 246263.Google Scholar
Aubouin, J. 1959. Contribution à l’étude géologique de la Grèce septentrionale: les confins de l'Epire et de la Thessalie. Annales Géologiques des Pays Helléniques 10, 1483.Google Scholar
Aubouin, J. 1965. Geosynclines. Amsterdam: Elsevier, 335 pp.Google Scholar
Barton, C. M. 1976. The tectonic vector and emplacement age of an allochthonous basement slice in the Olympos area, NE Greece. Bulletin de la Société géologique de France 7, 253–8.CrossRefGoogle Scholar
Baud, A., Jenny, C., Papanikolaou, D., Sideris, C. & Stampfli, G. 1991. New observations on Permian stratigraphy in Greece and geodynamic interpretation. Bulletin of the Geological Society of Greece 25, 187206.Google Scholar
Baumgartner, P. O. 1984. A Middle Jurassic–Early Cretaceous low-latitude radiolarian zonation based on Unitary Associations and age of Tethyan radiolarites. Eclogae Geologicae Helvetiae 77, 729837.Google Scholar
Baumgartner, P. O. 1985. Jurassic Sedimentary Evolution and Nappe Emplacement in the Argolis Peninsula (Peloponnesus, Greece). Denkschriften der Schweizerischen Naturforschenden Gesellbauschaft Bd. 99. Basel: Birkhäuser Verlag AG, 111 pp.Google Scholar
Baumgartner, P. O. 1995. Towards a Mesozoic radiolarian database – updates 1984–1990. In Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics, Biochronology (eds Baumgartner, P. O., O'Dogherty, L., Goričan, Š., Urquhart, E., Pillevuit, A. & Wever, P. De), pp. 689700. Mémoires de Géologie, Lausanne no. 23.Google Scholar
Baumgartner, P. O., Bartolini, A. C., Carter, E. S., Conti, M., Cortese, G., Danelian, T., De Wever, P., Dumitrica, P., Dumitrica-Jud, R., Goričan, Š., Guex, J., Hull, D. M., Kito, N., Marcucci, M., Matsuoka, A., Murchey, B., O'Dogherty, L., Savary, J., Vishnevskaya, V., Widz, D. & Yao, A. 1995a. Middle Jurassic to Early Cretaceous radiolarian biochronology of Tethys based on Unitary Associations. In Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics, Biochronology (eds Baumgartner, P. O., O'Dogherty, L., Goričan, Š., Urquhart, E., Pillevuit, A. & Wever, P. De), pp. 1013–48. Mémoires de Géologie, Lausanne no. 23.Google Scholar
Baumgartner, P. O. & Bernoulli, D. 1976. Stratigraphy and radiolarian fauna in a Late Jurassic–Early Cretaceous section near Achladi (Evvoia, Eastern Greece). Eclogae Geologicae Helvetiae 69, 601–26.Google Scholar
Baumgartner, P. O. & Bernoulli, D. 2015. Diachronous Middle–Late Jurassic ophiolite obduction and exposure along the eastern Pelagonian Margin (Hellenides, Greece). In Proceedings of the XIV INTERRAD Conference, Antalya, Turkey, 22–26 March 2015, pp. 113–14.Google Scholar
Baumgartner, P. O., Danelian, T., Dumitrica, P., Goričan, Š., Jud, R., Dogherty, L. O., Carter, B., Conti, M., De Wever, P., Kito, N., Marcucci, M., Matsuoka, A., Murchey, B. & Urquart, E. 1993. Middle Jurassic–Early Cretaceous radiolarian biochronology of Tethys: implications for the age of radiolarites in the Hellenides. Bulletin of the Geological Society of Greece 28, 1323.Google Scholar
Baumgartner, P. O., O'Dogherty, L., Goričan, Š., Dumitrica-Jud, R., Dumitrica, P., Pillevuit, A., Urquhart, E., Matsuoka, A., Danelian, T., Bartolini, A. C., Carter, E. S., De Wever, P., Kito, N., Marcucci, M. & Steiger, T. A. 1995b. Radiolarian catalogue and systematics of Middle Jurassic to Early Cretaceous Tethyan genera and species. In Middle Jurassic to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics, Biochronology (eds Baumgartner, P. O., O'Dogherty, L., Goričan, Š., Urquhart, E., Pillevuit, A. & De Wever, P.), pp. 37685. Mémoires de Géologie, Lausanne no. 23.Google Scholar
Bébien, J., Ohnenstetter, D., Ohnenstetter, M. & Vergély, P. 1980. Diversity of the Greek ophiolites: birth of the oceanic basins in transcurrent systems. Ofioliti 2, 129–97.Google Scholar
Bébien, J., Platvoet, B. & Mercier, J. 1994. Geodynamic significance of the Paikon Massif in the Hellenides: contribution of the volcanic rock studies. Bulletin of the Geological Society of Greece 30, 63–7.Google Scholar
Beccaluva, L., Coltorti, M., Prempti, I., Saccani, E., Siena, F. & Zeda, O. 1994. Mid-ocean ridge and supra-subduction affinities in ophiolitic belts from Albania. Ofioliti 19, 7796.Google Scholar
Beccaluva, L., Coltorti, M., Saccani, E. & Siena, F. 2005. Magma generation and crustal accretion as evidenced by supra-subduction ophiolites of the Albanide-Hellenide Subpelagonian zone. Island Arc 14, 551– 63.Google Scholar
Beck, C. M. 1980. Essai d'interprétation structurale et paleogéographique des roches vertes du Pinde d'Etolie (Grèce continentale méridionale). Annales de la Société Géologique du Nord 99, 355–65.Google Scholar
Bernoulli, D. & Laubscher, H. 1972. The palinspastic problem of the Hellenides. Eclogae Geologicae Helvetiae 65, 107–18.Google Scholar
Bertrand, G., Guillou-Frottier, L., & Loiselet, C. 2014. Distribution of porphyry copper deposits along the western Tethyan and Andean subduction zones: insights from a paleotectonic approach. Ore Geology Reviews 60, 174–90.CrossRefGoogle Scholar
Berza, T., Constantinescu, E. & Vlad, Ş.-N. 1998. Upper Cretaceous magmatic series and associated mineralisation in the Carpathian – Balkan Orogen. Resource Geology 48, 291306.Google Scholar
Blanchet, R., Durand Delga, M., Moullade, M. & Sigal, J. 1970. Contribution à l’étude du Crétacé des Dinarides internes: la région de Maglaj, Bosnie (Yougoslavie). Bulletin de la Société géologique de France 12, 1003–9.Google Scholar
Bojar, A. V., Neubauer, F. & Fritz, H. 1998. Cretaceous to Cenozoic thermal evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophysics 297, 229–49.CrossRefGoogle Scholar
Bonev, N., Marchev, P., Moritz, R. & Collings, D. 2015. Jurassic subduction zone tectonics of the Rhodope Massif in the Thrace region (NE Greece) as revealed by new U–Pb and 40Ar/39Ar geochronology of the Evros ophiolite and high-grade basement rocks. Gondwana Research 27, 760–75.Google Scholar
Bornemann, A., Aschwer, U. & Mutterlose, J. 2003. The impact of calcareous nannofossils on the pelagic carbonate accumulation across the Jurassic–Cretaceous boundary. Palaeogeography, Palaeoclimatology, Palaeoecology 199, 187228.Google Scholar
Bortolotti, V., Carras, N., Chiari, M., Fazzuoli, M., Marcucci, M., Nirta, G., Principi, G. & Saccani, E. 2009. The ophiolite-bearing mélange in the early Tertiary Pindos flysch of Etolia (Central Greece). Ofioliti 34, 8394.Google Scholar
Bortolotti, V., Carras, N., Chiari, M., Fazzuoli, M., Marcucci, M., Photiades, A. & Principi, G. 2003. The Argolis Peninsula in the paleogeographic and geodynamic frame of the Hellenides. Ofioliti 28, 7994.Google Scholar
Bortolotti, V., Carras, N., Chiari, M., Fazzuoli, M., Photiades, A. & Principi, G. 2004a. Sedimentary evolution of the Upper Jurassic Zyghosti platform, Kozani, Northern Greece. In Proceedings of the International Symposium on Earth System Sciences 2004, Istanbul–Turkey, pp. 705–12.Google Scholar
Bortolotti, V., Chiari, M., Kodra, A., Marcucci, M., Marroni, M., Mustafa, F., Pandolfi, L., Prela, M., Principi, G. & Saccani, E. 2006. Triassic MORB magmatism in the Southern Mirdita zone (Albania). Ofioliti 31, 19.Google Scholar
Bortolotti, V., Chiari, M., Marcucci, M., Marroni, M., Pandolfi, L., Principi, G. & Saccani, E. 2004b. Comparison among the Albanian and Greek ophiolites, in search of constraints for the evolution of the Mesozoic Tethys Ocean. Ofioliti 29, 1935.Google Scholar
Bortolotti, V., Chiari, M., Marcucci, M., Photiades, P., Principi, G. & Saccani, E. 2008. New geochemical and age data on the ophiolites from the Othris area (Greece): implication for the Triassic evolution of the Vardar Ocean. Ofioliti 33, 135–51.Google Scholar
Bortolotti, V., Chiari, M., Marroni, M., Pandolfi, L., Principi, G. & Saccani, E. 2013. The geodynamic evolution of the ophiolites from Albania and Greece, Dinaric-Hellenic belt: one, two or more oceanic basins? International Journal of Earth Science 102, 783811.Google Scholar
Bortolotti, V., Kodra, A., Marroni, M., Mustafa, F., Pandolfi, L., Principi, G. & Saccani, E. 1996. Geology and petrology of ophiolitic sequences in the Mirdita region (northern Albania). Ofioliti 21, 320.Google Scholar
Bortolotti, V., Marroni, M., Pandolfi, L. & Principi, G. 2005. Mesozoic to Tertiary tectonic history of the Mirdita ophiolites, northern Albania. The Island Arc 14, 471–93.Google Scholar
Bortolotti, V. & Principi, G. 2005. Tethyan ophiolites and Pangea break-up. The Island Arc 14, 442–70.CrossRefGoogle Scholar
Bown, P. R. 1998. Calcareous Nannofossils Biostratigraphy. British Micropalaeontological Society Publication Series. Cambridge: Chapman & Hall, 328 pp.Google Scholar
Brown, S. A. M. & Robertson, A. H. F. 2003. Sedimentary geology as a key to understanding the tectonic evolution of the Mesozoic–Early Tertiary Paikon Massif, Vardar suture zone, N Greece. Sedimentary Geology 160,179212.Google Scholar
Brown, S. A. M. & Robertson, A. H. F. 2004. Evidence for Neotethys rooted within the Vardar suture zone from the Voras Massif, northernmost Greece. Tectonophysics 381, 143–73.Google Scholar
Brunn, J. H. 1956. Contribution à l’étude du Pinde septentrional et d'une partie de la Macédoine occidentale. Annales Géologiques des Pays Helléniques 7, 1358.Google Scholar
Brunn, J. H. 1960. Les zones helléniques internes et leur extension. Réflexions sur l'orogénèse alpine. Bulletin de la Société géologique de France 7, 470–86.Google Scholar
Brun, J.-P. & Faccenna, C. 2008. Exhumation of high-pressure rocks driven by slab rollback. Earth and Planetary Science Letters 272, 17.Google Scholar
Burg, J.-P. 2012. Rhodope: from Mesozoic convergence to Cenozoic extension. Review of petro-structural data in the geochronological frame. In The Geology of Greece (eds Skourtsos, E. & Lister, G. S.). Journal of the Virtual Explorer 42, paper 1. doi: 10.3809/jvirtex.2011.00270.Google Scholar
Capedri, S., Toscani, L., Grandi, R., Venturelli, G., Papanikolaou, D. & Skarpelis, N. S. 1997. Triassic volcanic rocks of some type-localities from the Hellenides. Chemie der Erde 57, 257–76.Google Scholar
Caputo, M. & Caputo, R. 1988. Structural analysis: new analytical approach and applications. Annales Tectonicae 2, 84–9.Google Scholar
Carosi, R., Cortesogno, L., Gaggero, L. & Marroni, M. 1996. Geological and petrological features of the metamorphic sole from the Mirdita ophiolites, northern Albania. Ofioliti 21, 2140.Google Scholar
Carras, N. 1995. The Parnassus carbonate platform during the Late Jurassic–Early Cretaceous (stratigraphy and palaeogeographical evolution). Ph.D. thesis, University of Athens, D. Mavrommati Publ., Athens, 232 pp. (in Greek, with extended Italian summary). Published thesis.Google Scholar
Carras, N. & Tselepidis, V. 2001. Stratigraphy of the Alpine formations of the Parnassus zone and of some allochthonous sequences in the Distomon area (Boeotia, Greece). In The Parnassus Zone, Central Greece (eds Solakius, N. & Kati, M.), pp. 1736. Meddelanden Fran Lunds Universitets, Geografiska Institutioner, Avhandlingar 139.Google Scholar
Celet, P. 1962. Contribution à l’étude géologique du Parnasse-Kiona et d'une partie des régions méridionales de la Grèce continentale. Annales Géologiques des Pays Helléniques 13, 1446.Google Scholar
Celet, P. 1979. Les bordures de la zone du Parnasse (Grèce). Evolution paléogéographique au Mésozoîque et caractères structuraux. In Proceedings of the VI Colloquium on the Geology of the Aegean Region, Athens 2, pp. 725–40.Google Scholar
Celet, P. & Clément, B. 1971. Sur la présence d'une nouvelle unité paléogéographique et structurale en Grèce continentale du sud: L'unité du flysch béotien. Compte Rendu sommaire des séances de la Société géologique de France 17, 43–7.Google Scholar
Celet, P., Clément, B. & Ferrière, J. 1976. La zone béotienne en Grèce: implications paléogéographiques et structurales. Eclogae Geologicae Helvetiae 69, 577– 99.Google Scholar
Celet, P., Clément, B. & Ferrière, J. 1988. Evolution géodynamique de la plate-forme Pélagonienne au Mésozoîque. Bulletin of the Geological Society of Greece 20, 215–22.Google Scholar
Celet, P., & Ferrière, J. 1978. Les Hellénides internes: le Pélagonien. Eclogae Geologicae Helvetiae 71, 467–95.Google Scholar
Celet, P., Ferrière, J. & Wigniolle, E. 1977. Le problème de l'origine des blocs exogènes du mélange à éléments ophiolitiques au sud du Sperchios et dans le massif de l'Othrys (Grèce). Bulletin de la Société géologique de France 7, 935–42.Google Scholar
Chambefort, I. & Moritz, R. 2006. Late Cretaceous structural control and Alpine overprint of the high-sulfidation Cu–Au epithermal Chelopech deposit, Srednogorie Belt, Bulgaria. Mineralium Deposita 42, 259–80.Google Scholar
Chiari, M., Baumgartner, P. O., Bernoulli, D., Bortolotti, V., Marcucci, M., Photiades, A. & Principi, G. 2013. Late Triassic, early and middle Jurassic Radiolaria from ferromanganese-chert ‘nodules’ (Angelokastron, Argolis, Greece): evidence for prolonged radiolarite sedimentation in the Maliac-Vardar Ocean. Facies 59, 391424.CrossRefGoogle Scholar
Chiari, M., Bortolotti, V., Marcucci, M., Photiades, A. & Principi, G. 2003. The Middle Jurassic siliceous sedimentary cover at the top of the Vourinos ophiolite (Greece). Ofioliti 28, 95103.Google Scholar
Chiari, M., Bortolotti, V., Marcucci, M., Photiades, A., Principi, G. & Saccani, E. 2012. Radiolarian biostratigraphy and geochemistry of the Koziakas Massif ophiolites (Greece). Bulletin de la Société géologique de France 183, 287306.CrossRefGoogle Scholar
Clément, B. 1971. Découverte d'un flysch éocrétacé en Béotie (Grèce continentale). Comptes Rendus de l'Academie des Sciences, Paris 272, 791–2.Google Scholar
Clément, B. 1972. Sur une nouvelle interprétation tectonique du Sud Ouest des monts Géranées (Grèce continentale). Annales de la Société Géologique du Nord 42, 171–5.Google Scholar
Clément, B. 1976. Essai d'interprétation structurale d'un secteur des zones internes helléniques: l'Attique-Béotie. Bulletin de la Société géologique de France 7 (18), 303–16.Google Scholar
Clift, P. D. & Dixon, J. E. 1998. Jurassic ridge collapse, subduction initiation and ophiolite obduction in the southern Greek Tethys. Eclogae Geologicae Helvetiae 91, 128–38.Google Scholar
Çollaku, A, Cadet, J. P., Bonneau, M. & Jolivet, L. 1992. L’édifice structural de l'Albanie septentrionale: des éléments de réponse sur les modalités de la mise en place des ophiolites. Bulletin de la Société géologique de France 163, 455–68.Google Scholar
Combes, P.-J. 1977. Observations et remarques sédimentologiques, paléogéographiques et géochimiques sur les bauxites du 3e horizon dans la zone du Parnasse (Grèce). Comptes Rendus de l'Academie des Sciences, Paris 284, 871–4.Google Scholar
Combes, P.-J. 1979. Observations sédimentologiques, paléogéographiques, minéralogiques et géochimiques sur les bauxites du deuxième horizon dans la zone du Parnasse (Grèce). Bulletin de la Société géologique de France 7 (21), 485–94.Google Scholar
Combes, P.-J. 1984. Regards sur la géologie des bauxites; aspects récents sur la genèse de quelques gisements à substratum carbonaté. Bulletin des Centres de Recherche Exploration-Production Elf-Aquitaine 8, 251– 74.Google Scholar
Combes, P.-J., Fourcade, E., Masse, J.-P. & Philip, J. 1981. Observations stratigraphiques et paleontologiques sur le Cretace de la zone du Parnasse (Grece). Académie Yougoslave des Sciences et des Arts (Travaux du Comité international pour l’étude des bauxites, de l'alumine et de l'aluminium) 11 (16), 347–65.Google Scholar
Danelian, T. 1994. Palaeo-oceanographic significance of mid-Jurassic radiolarites from the Maliac (Sub-Pelagonian) margin of Othris (Greece). Bulletin of the Geological Society of Greece 32, 167–75.Google Scholar
Danelian, T. & Robertson, A. H. F. 1998. Palaeogeographic implications of the age of radiolarian-rich sediments in Beotia (Greece). Bulletin of the Geological Society of Greece 32, 21–9.Google Scholar
Danelian, T. & Robertson, A. H. F. 2001. Neotethyan evolution of Eastern Greece (Pagondas Mélange, Evia island) inferred from radiolarian biostratigraphy and the geochemistry of associated extrusive rocks. Geological Magazine 138, 345–63.Google Scholar
Danelian, T., Robertson, A. H. F. & Dimitriadis, S. 1996. Age and significance of radiolarian sediments within basic extrusives of the marginal basin Guevgueli Ophiolite (northern Greece). Geological Magazine 133, 127–36.Google Scholar
De Bono, A., Martini, R., Zaninetti, L., Hirsch, F., Stampfli, G. M. & Vavassis, I. 2001. Permo-Triassic stratigraphy of the Pelagonian zone in Central Evia Island (Greece). Eclogae Geologicae Helvetiae 94, 289311.Google Scholar
Degnan, P. J. & Robertson, A. H. F. 1998. Mesozoic–early Tertiary passive margin evolution of the Pindos ocean (NW Peloponnese, Greece). Sedimentary Geology 117, 3370.Google Scholar
Degnan, P. J. & Robertson, A. H. F. 2006. Synthesis of the tectonic-sedimentary evolution of the Mesozoic–Early Cenozoic Pindos ocean: evidence from the NW Peloponnese, Greece. In Tectonic Development of the Eastern Mediterranean Region (eds Robertson, A. H. F. & Mountrakis, D.), pp. 467–91. Geological Society of London, Special Publication no. 260.Google Scholar
Dercourt, J. 1967. Sur l'accident de Scutari-Pec, la signification paléogéographique de quelques series condensées en Albanie septentrionale. Annales de la Société Géologique du Nord 9, 1109.Google Scholar
Dercourt, J. 1972. The Canadian Cordillera, the Hellenides, and the sea-floor spreading theory. Canadian Journal of Earth Sciences 9, 709–43.Google Scholar
De Wever, P. 1995. Radiolarians overlying ophiolites of the Almopias domain (Macedonia, Greece). In Middle Cretaceous to Lower Cretaceous Radiolaria of Tethys: Occurrences, Systematics, Biochronology (eds Baumgartner, P. O., O'Dogherty, L., Goričan, Š., Urquhart, E., Pillevuit, A. & Wever, P. De), pp. 877–9. Mémoires de Géologie, Lausanne no. 23.Google Scholar
Dilek, Y., Shallo, M. & Furnes, H. 2005. Rift-drift, seafloor spreading and subduction tectonics of Albanian ophiolites. International Geology Review 46, 147–76.Google Scholar
Dimo-Lahitte, A., Monié, P. & Vergély, P. 2001. Metamorphic soles from the Albanian ophiolites: petrology, 40Ar/39Ar geochronology, and geodynamic evolution. Tectonics 20, 7896.Google Scholar
Dumitrica, P., Immenhauser, A. & Dumitrica-Jud, R. 1997. Mesozoic radiolarian biostratigraphy from Masirah ophiolite, Sultanate of Oman, Part 1. Middle Triassic, Uppermost Jurassic and Lower Cretaceous spumellarians and multisegmented nassellarians. Bulletin of the National Museum of Natural Sciences Taiwan 9, 1106.Google Scholar
Duretz, T., Gerya, T. V. & May, D. 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics 502, 244–56.Google Scholar
Fazzuoli, M. & Carras, N. 2007. Development and demise of a carbonate platform by compressional and extensional tectonics: the Zyghosti platform (Late Jurassic) and the Cretaceous transgression, Kozani, Northern Greece. In 25th IAS Meeting of Sedimentology, 2007, Patras-Greece, Field Trip P7, Field Trips Guide Book, pp. 173–90.Google Scholar
Fazzuoli, M., Menna, F., Nirta, G., Carras, N. & Principi, G. 2008. The Cretaceous transgression in the Dinaric-Hellenic orogen. Rendiconti della Società Geologica Italiana 1, 77–9.Google Scholar
Ferrière, J. 1975. Sur la signification des séries du massif de l'Othris (Grèce continentale orientale): la zone isopique maliaque. Annales de la Société Géologique du Nord 96, 121–34.Google Scholar
Ferrière, J. 1982. Paléogéographies et tectoniques superposées dans les Hellénides internes au niveau de l'Othrys et du Pelion (Grèce). Société Géologique du Nord 8, 970 pp.Google Scholar
Ferrière, J. 1985. Constitution and development of the Hellenic ophiolites from the Othrys-Pelion area, Greece. [Nature et développement des ophiolites helléniques du secteur Othrys-Pelion]. Ofioliti 10, 255–77.Google Scholar
Ferrière, J., Baumgartner, P. O. & Chanier, F. 2016. The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites. International Journal of Earth Sciences 105, 1941–63.Google Scholar
Ferrière, J, Chanier, F., Baumgartner, P. O., Dumitrica, P., Caridroit, M., Bout-Roumazeilles, V., Graveleau, F., Danelian, T. & Ventalon, S. 2015. The evolution of the Triassic–Jurassic Maliac oceanic lithosphere: insights from the supra-ophiolitic series of Othris (continental Greece). Bulletin de la Société géologique de France 186, 399411.Google Scholar
Ferrière, J., Chanier, F. & Ditbanjong, P. 2012. The Hellenic ophiolites: eastward or westward obduction of the Maliac Ocean, a discussion. International Journal of Earth Sciences 101, 1559–80.Google Scholar
Ferrière, J. & Stais, A. 1995. New interpretation of the Vardarian Tethysian area based on the Peonian series [Nouvelle interprétation de la suture téthysienne vardarienne d'après l'analyse des séries de Péonias (Vardar oriental, Hellénides internes)]. Bulletin de la Société géologique de France 166, 327–39.Google Scholar
Fleury, J. J. 1975. Le ‘Premier Flysch du Pinde’ témoin de l'ensemble des événements orogéniques mésozoïques anté-crétacé supérieur ayant affecté les Hellénides internes. Comptes Rendus de l'Académie des Sciences, Paris 281, 1459–61.Google Scholar
Fleury, J. J. 1980. Evolution d'une platforme et d'un bassin dans leur cadre alpin: les zones de Gavrovo-Tripolitza et du Pinde-Olonos. Annales de la Société Géologique du Nord 4, 1651.Google Scholar
Gallhofer, D., Quadt, A. V., Peytcheva, I., Schmid, S. M. & Heinrich, C. A. 2015. Tectonic, magmatic, and metallogenic evolution of the Late Cretaceous arc in the Carpathian-Balkan orogen. Tectonics 34, 1813–36.Google Scholar
Gautier, P., Brun, J. P., Moriceau, R., Sokoutis, D., Martinod, J. & Jolivet, L. 1999. Timing, kinematics and cause of Aegean extension: a scenario based on a comparison with simple analogue experiments. Tectonophysics 315, 3172.Google Scholar
Ghikas, C., Dilek, Y. & Rassios, A. E. 2010. Structure and tectonics of subophiolitic mélanges in the western Hellenides (Greece): implications for ophiolite emplacement tectonics. International Geological Review 52, 423–53.CrossRefGoogle Scholar
Goldsworthy, M., Jackson, J. & Haines, J. 2002. The continuity of active fault systems in Greece. Geophysical Journal International 148, 596618.Google Scholar
Gregou, S. 1996. The pre-flysch and basal shaly flysch deposition in the Parnassus-Ghiona Zone, central Greece. Lund Publications in Geology 132, 130.Google Scholar
Gregou, S. & Solakius, N. 1997. The pre-flysch and the basal shaly flysch deposition in Osios Loukas and Distomo areas, central Parnassus, central Greece, during the late Paleocene to the early Eocene. Neues Jahrbuch fur Geologie und Palaontologie – Abhandlungen 204, 3582.CrossRefGoogle Scholar
Gregou, S., Solakius, N. & Pomoni-Papaioannou, F. 1994. The carbonate-flysch transition in the Arachova sequence of the Parnassus-Ghiona Zone, Central Greece. Geological Magazine 131, 819–36.CrossRefGoogle Scholar
Haq, B. U. 2014. Cretaceous eustasy revisited. Global and Planetary Change 113, 4458.Google Scholar
Hou, Z., Yang, Z., Qu, X., Meng, X., Li, Z., Beaudoin, G., Rui, Z., Gao, Y. & Zaw, K. 2009. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan Orogen. Ore Geology Reviews 36, 2551.Google Scholar
Hou, Z., Zhang, H., Pan, Z. & Yang, Z. 2011. Porphyry Cu (–Mo–Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geology Reviews 39, 2145.Google Scholar
Hynes, A. J., Nisbet, E. G., Smith, A. G., Welland, J. P. & Rex, D. C. 1972. Spreading and emplacement of some ophiolites in the Othris region (Eastern Central Greece). Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 123, 455–68.CrossRefGoogle Scholar
Iancu, V., Berza, T., Seghedi, A., Gheuca, I. & Hann, H. P. 2005. Alpine polyphase tectono-metamorphic evolution of the South Carpathians: a new overview. Tectonophysics 410, 337–65.Google Scholar
Imer, A., Richards, J. P. & Creaser, R. A. 2013. Age and tectonomagmatic setting of the Eocene Çöpler–Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey. Mineralium Deposita 48, 557–83.Google Scholar
Ivanova, D., Bonev, N. & Chatalov, A. 2015. Biostratigraphy and tectonic significance of lowermost Cretaceous carbonate rocks of the Circum-Rhodope Belt (Chalkidhiki Peninsula and Thrace region, NE Greece). Cretaceous Research 52, 2563.Google Scholar
Jacobshagen, V. 1986. Geologie von Griechenland. Beitraege zur Regionalen Geologie der Erde. Berlin-Stuttgart: Gerbrueder Borntraeger, 363 pp.Google Scholar
Jacobshagen, V., Durr, S., Kockel, F., Kopp, K. O., Kowalczyk, G., Berckhamer, H. & Buttner, D. 1978. Structure and geodynamic evolution of the Aegean region. In Alps, Apennines, Hellenides (eds Closs, H., Roeder, D. & Schmidt, K.), pp. 537–64. Inter-Union Commission on Geodynamics Scientific Report 38. Stuttgart: Schweizerbart.Google Scholar
Jaeger, P. 1980. Nouvelles données sur la géologie de la région de Mouzaki, province de Karditsa (Grèce continentale). Relations entre les séries pindique, béotienne et ultrapindique. Bulletin de la Société géologique de France 22, 135–43.Google Scholar
Jankovic, S. 1997. The Carpatho-Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita 32, 426–33.Google Scholar
Jolivet, L., Brun, J.-P., Gautier, P., Lallemant, S. & Patriat, M. 1994. 3D-kinematics of extension in the Aegean region from the early Miocene to the present, insights from the ductile crust. Bulletin de la Société géologique de France 165, 195209.Google Scholar
Jolivet, L. & Brun, J.-P. 2010. Cenozoic geodynamic evolution of the Aegean. International Journal of Earth Sciences 99, 109–38.Google Scholar
Jolivet, L., Faccenna, C., Goffé, B., Burov, E. & Agard, P. 2003. Subduction tectonics and exhumation of high-pressure metamorphic rocks in the Mediterranean orogens. American Journal of Science 303, 353409.Google Scholar
Jolivet, L., Faccenna, C., Huet, B., Labrousse, L., Le Pourhiet, L., Lacombe, O., Lecomte, E., Burov, E., Denèle, Y., Brun, J.-P., Philippon, M., Paul, A., Salaün, G., Karabulut, H., Piromallo, C., Monié, P., Gueydan, F., Okay, A. I., Oberhänsli, R., Pourteau, A., Augier, R., Gadenne, L. & Driussi, O. 2013. Aegean tectonics: strain localisation, slab tearing and trench retreat. Tectonophysics 597–598, 133.Google Scholar
Jolivet, L., Labrousse, L., Agard, P., Lacombe, O., Bailly, V., Lecomte, E., Mouthereau, F. & Mehl, C. 2010. Rifting and shallow-dipping detachments, clues from the Corinth Rift and the Aegean. Tectonophysics 483, 287304.Google Scholar
Jones, G., De Wever, P. & Robertson, A. H. F. 1992. Significance of radiolarian age data to the Mesozoic tectonic and sedimentary evolution of the northern Pindos Mountains, Greece. Geological Magazine 129, 385400.Google Scholar
Jones, G. & Robertson, A. H. F. 1991. Tectono-stratigraphy and evolution of the Mesozoic Pindos ophiolite and related units, northwestern Greece. Journal of the Geological Society, London 148, 261–88.Google Scholar
Jones, G. & Robertson, A. H. F. 1994. Rift-drift-subduction and emplacement history of the Early Mesozoic Pindos Ocean: evidence from the Advella Mélange, northern Greece. Bulletin of the Geological Society of Greece 30, 4558.Google Scholar
Kalpakis, G. 1979. La sédimentation phosphatée dans la zone Parnasse-Kiona au sommet du Crétacé. Annales Géologiques des Pays Helléniques 29, 758–95.Google Scholar
Kaplanis, A., Koukouvelas, I., Xypolias, P. & Kokkalas, S. 2013. Kinematics and ophiolite obduction in the Gerania and Helicon Mountains, central Greece. Tectonophysics 595–596, 215–34.Google Scholar
Karamata, S., Olujić, J., Protić, L., Milovanović, D., Vujnović, L., Popević, A., Memović, E., Radovanović, Z. & Resimić-Sarić, K. 2000. The western belt of the Vardar Zone – the remnant of a marginal sea. In International Symposium Geology and Metallogeny of the Dinarides and the Vardar Zone (eds Karamata, S. & Janković, S.), pp. 131–5. Banja Luka, Sarajevo: Academy of Sciences & Arts Republic of Srpska Vol. 1.Google Scholar
Katsikatsos, G. 1979. La structure tectonique d'Attique et de l'ile d'Eubée. Proceedings of the Institute of Geology and Mining Research 1, 211–20.Google Scholar
Kilias, A., Frisch, W., Avgerinas, A., Dunkl, I., Falalakis, G. & Gawlick, H.-J. 2010. Alpine architecture and kinematics of deformation of the northern Pelagonian nappe pile in the Hellenides. Austrian Journal of Earth Sciences 103, 428.Google Scholar
Kilias, A. A., Tranos, M. D., Papadimitriou, E. E. & Karakostas, V. G. 2008. Die rezente Krustendeformation des hellenischen Orogens im zentralen Griechenland; die Kremasta- und Sperchios- Störungssysteme und ihre Verhältnisse zu den benachbarten großen Bruchstrukturen. Zeitschrift der Deutschen Gesellschaft fur Geowissenschaften 159, 533–47.Google Scholar
Kissel, C., Speranza, F. & Milicevic, V. 1995. Paleomagnetism of external southern and central Dinarides and northern Albanides: implications for the Cenozoic activity of the Scutari-Pec Transverse zone. Journal of Geophysical Research 100, 14 999–15 007.Google Scholar
Kranis, H. D. & Papanikolaou, D. I. 2001. Evidence for detachment faulting on the NE Parnassos mountain front (Central Greece). Bulletin of the Geological Society of Greece 34, 281–7.Google Scholar
Kukoč, D., Goričan, Š., Kosir, A., Belak, M., Halamic, J. & Hrvatović, H. 2012. Middle Jurassic age of basalts and transition to Upper Jurassic carbonates in the Guevgueli Ophiolite Complex (Republic of Macedonia). In Proceedings of the XIII INTERRAD Conference, Cadiz, Spain, 25–29 March 2012, pp. 227–9.Google Scholar
Lefèvre, C., Cabanis, B., Ferrière, J., Thiebault, F. & Platevoet, R. 1993. Mise en evidence d'une dualité dans le volcanise triasique hellénique: apport de la géochimie des éléments traces. Comptes Rendus de l'Académie de Sciences, Paris série II 316, 1311–8.Google Scholar
Le Pichon, X. & Angelier, J. 1979. The Hellenic arc and trench system: a key to the neotectonic evolution of the eastern Mediterranean area. Tectonophysics 60, 142.Google Scholar
Le Pichon, X., Chamot-Rooke, N., Lalleman, S., Noomen, R. & Veis, G. 1995. Geodetic determination of the kinematics of central Greece with respect to Europe: implications for eastern Mediterranean tectonics. Journal of Geophysical Research 100, 12 675– 90.Google Scholar
Lips, A. L. W. 2002. Correlating magmatic–hydrothermal ore deposit formation over time with geodynamic processes in SE Europe. In The Timing and Location of Major Ore Deposits in an Evolving Orogen (eds Blundell, D. J., Neubauer, F. & von Quadt, A.), pp. 6979. Geological Society London, Special Publication no. 204.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 1998. 40Ar–39Ar laserprobe direct dating of discrete deformational events: a continuous record of early Alpine tectonics in the Pelagonian Zone, NW Aegean area, Greece. Tectonophysics 298, 133–53.Google Scholar
Lips, A. L. W., White, S. H. & Wijbrans, J. R. 2000. Middle–Late Alpine thermotectonic evolution of the southern Rhodope Massif, Greece. Geodinamica Acta 13, 281–92.Google Scholar
Lips, A. L. W., Wijbrans, J. R. & White, S. H. 1999. New insights from 40Ar/ 39Ar laserprobe dating of white mica fabrics from the Pelion Massif, Pelagonian Zone, Internal Hellenides, Greece: implications for the timing of metamorphic episodes and tectonic events in the Aegean region. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (eds Durand, B., Jolivet, L., Horváth, F. & Séranne, M.), pp. 457–74. Geological Society of London, Special Publication no. 156.Google Scholar
Lister, G. S., Banga, G. & Feenstra, A. 1984. Metamorphic core complexes of Cordilleran type in the Cyclades, Aegean Sea, Greece. Geology 12, 221–5.Google Scholar
Maillot, H. 1979. Etude sédimentologique du ‘Premier Flysch’ en Peloponnèse occidental (Grèce): La Formation d'Andritsena. Bulletin of the Geological Society of Greece 14, 94115.Google Scholar
Maratos, G., Rigopoulos, K. & Athanassiou, A. 1965. Geological Map of Greece, Scale 1:50,000, Atalanti Sheet. Athens: IGME.Google Scholar
Maratos, G., Rigopoulos, K. & Athanassiou, A. 1967. Geological Map of Greece, Scale 1:50,000, Elateia Sheet. Athens: IGME.Google Scholar
Marinos, G., Papastamatiou, J., Maratos, G., Melidonis, N., Andronopoulos, B., Tataris, A., Betoulis, D., Katsikatsos, G., Maragoudakis, N. & Lalechos, N. 1967. Geological Map of Greece, Lamia Sheet. Athens: IGME.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings of the 2nd International Conference on Planktonic Microforaminifera, Roma (ed. A. Farinacci), pp. 739–85. Ed. Tecnosc. no. 2.Google Scholar
Meinhold, G., Kostopoulos, D., Reischmann, T., Frei, D. & BouDagher-Fadel, M. K. 2009. Geochemistry, provenance and stratigraphic age of metasedimentary rocks from the eastern Vardar suture zone, northern Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 277, 199225.Google Scholar
Mercier, J. 1966. Mouvements orogéniques et magmatisme d'age Jurassique supérieur-Éocrétacé dans les Zones Internes des Hellénides (Macédoine, Grèce). Revue de Géographie Physique et Géologie Dynamique 8, 265–78.Google Scholar
Mercier, J.-L. 1968. Étude géologique des zones Hellénides en Macèdoine centrale (Grece). Annales Géologiques des Pays Helléniques 20, 1792.Google Scholar
Mercier, J., Sorel, D., Vergély, P. & Simeakis, K. 1989. Extensional tectonic regimes in the Aegean basins during the Cenozoic. Basin Research 2, 4971.Google Scholar
Mercier, J.-L., Vergély, P. & Bébien, J. 1975. Les ophiolites helléniques « obductées » au Jurassique supérieur sont-elles les vestiges d'un Océan téthysien ou d'une mer marginale périeuropeénne? Comptes Rendus Sommaires de la Société géologique de France 1975 (4), 108–12.Google Scholar
Mettos, A., Ioakim, C. & Rondoyanni, T. 2000. Palaeoclimatic and palaeogeographic evolution of Attica-Beotia (Central Greece). Special Publications of the Geological Society of Greece 9, 187–96.Google Scholar
Meulenkamp, J. E., Wortel, M. J. R., van Wamel, W. A., Spakman, W. & Hoogerduyn Strating, E. 1988. On the Hellenic subduction zone and the geodynamic evolution of Crete since the late Middle Miocene. Tectonophysics 146, 203–15.Google Scholar
Moritz, R., Márton, I., Ortelli, M., Marchev, P., Voudouris, P., Bonev, N., Spikings, R. & Cosca, M. 2010. A review of age constraints of epithermal precious and base metal deposits of the Tertiary Eastern Rhodopes: coincidence with Late Eocene–Early Oligocene tectonic plate reorganization along the Tethys. In Proceedings of the XIX Congress of the Carpathian Balkan Geological Association (eds G. Christofides, N. Kantiradis, D. S. Kostopoulos & A. A. Chatziperos), pp. 351–8.Google Scholar
Morycowa, E. & Marcopoulou-Diacantoni, A. 2002. Albian corals from the Subpelagonian Zone of Central Greece (Agrostylia, Parnassos region). Annales Societatis Geologorum Poloniae 72, 165.Google Scholar
Myhill, R. 2011. Constraints on the evolution of the Mesohellenic Ophiolite from subophiolitic metamorphic rocks. In Mélanges–Processes of Formation and Societal Significance (eds Wakabayashi, J. & Dilek, Y.), pp. 7594. Geological Society of America, Special Paper no. 480.Google Scholar
Nachev, I. & Dimitrova, E. 1995. Upper Cretaceous stratigraphy of the Eastern Sredna Gora zone. Geologica Balcanica 25, 326.Google Scholar
Nance, D. 1981. Tectonic history of a segment of the Pelagonian zone, northeastern Greece. Canadian Journal of Earth Sciences 18, 1111–26.Google Scholar
Neubauer, F. 2002. Contrasting Late Cretaceous with Neogene ore provinces in the Alpine–Balkan–Carpathian–Dinaride collision belt. In The Timing and Location of Major Ore Deposits in an Evolving Orogen (eds Blundell, D. J., Neubauer, F. & von Quadt, A.), pp. 81102. Geological Society London, Special Publication no. 204.Google Scholar
Neumann, P. 2001. Turbidite deposition in the early Late Cretaceous Pindos Basin (External Hellenides). Bulletin of the Geological Society of Greece 34, 771–7.Google Scholar
Neumann, P. & Zacher, W. 2004. The Cretaceous sedimentary history of the Pindos basin (Greece). International Journal of Earth Sciences 93, 119–31.Google Scholar
Nirta, G., Bortolotti, V., Chiari, M., Menna, F., Saccani, E., Principi, G. & Vannucchi, P. 2010. Ophiolites from the Grammos-Arrenes area, northern Greece: geological, paleontological and geochemical data. Ofioliti 35, 103–15.Google Scholar
Nirta, G., Moratti, G., Piccardi, L., Montanari, D., Catanzariti, R., Carras, N. & Papini, M. 2015. The Boeotian flysch revisited: new constraints on ophiolite obduction in central Greece. Ofioliti 40, 107– 23.Google Scholar
Ozsvart, P., Dosztaly, L., Migiros, G., Tselepidis, V. & Kovacs, K. 2012. New radiolarian biostratigraphic age constraints on Middle Triassic basalts and radiolarites from the Inner Hellenides (Northern Pindos and Othris Mountains, Northern Greece) and their implications for the geodynamic evolution of the early Mesozoic Neotethys. International Journal of Earth Sciences 101, 1487–501.Google Scholar
Pamic, J. 2002. The Sava-Vardar zone of the Dinarides and Hellenides versus the Vardar Ocean. Eclogae Geologicae Helvetiae 95, 99113.Google Scholar
Papanikolaou, D. 1997. The tectonostratigraphic terranes of the Hellenides. Annales Géologiques des Pays Helléniques 37, 495514.Google Scholar
Papanikolaou, D. 2009. Timing of tectonic emplacement of the ophiolites and terrane paleogeography in the Hellenides. Lithos 108, 262–80.Google Scholar
Papanikolaou, D. 2013. Tectonostratigraphic models of the Alpine terranes and subduction history of the Hellenides. Tectonophysics 595–596, 124.Google Scholar
Papanikolaou, D., Gouliotis, L. & Triantaphyllou, M. 2009. The Itea–Amfissa detachment: a pre-Corinth rift Miocene extensional structure in central Greece. In Collision and Collapse at the Africa–Arabia–Eurasia Subduction Zone (eds Hinsbergen, D. J. J. van, Edwards, M. A. & Govers, Rob), pp. 293310. Geological Society of London, Special Publication no. 311.Google Scholar
Papastamatiou, J. 1960. La géologie de la région montagneuse du Parnasse–Kiona–Oeta. Bulletin de la Société géologique de France 7, 398409.Google Scholar
Papastamatiou, J., Tataris, A., Katsikatsos, G. & Maragoudaxis, N. 1962a. Geological Map of Greece, Scale 1:50 000, Sheet ‘Galaxidhion . I.G.S.R.Google Scholar
Papastamatiou, J., Tataris, A., Kounis, G. D., Maragoudaxis, N., Monopolis, D., Albadakis, N. & Koukouzos, R. 1971. Geological Map of Greece, Scale 1:50 000, Levadhia Sheet. Athens: I.G.M.E. Google Scholar
Papastamatiou, J., Tataris, A., Vetoulis, D., Katsikatsos, G., Lalechos, N. & Eleutheriou, A. 1962b. Geological Map of Greece, Scale 1:50 000, Sheet ‘Amphiklia . I.G.S.R. Google Scholar
Pe-Piper, G. 1982. Geochemistry, tectonic setting and metamorphism of mid-Triassic volcanic rocks of Greece. Tectonophysics 85, 253–72.Google Scholar
Pe-Piper, G. 1998. The nature of Triassic extension-related magmatism in Greece: evidence from Nd and Pb isotope geochemistry. Geological Magazine 135, 331–48.Google Scholar
Pe-Piper, G. & Hatzipanagiotou, K. 1993. Ophiolitic rocks of the Kerassies-Milia Belt, continental Greece. Ofioliti 18, 157–69.Google Scholar
Pe-Piper, G., Matarangas, D. & Jacobshagen, V. 1996. The Mesozoic metavolcanic rocks of Alonnisos and Kyra Panagia islands, Sporades, Greece. Neues Jahrbuch für Mineralogie, Monatshefte 37, 251–63.Google Scholar
Pe-Piper, G. & Piper, D. J. W. 1991. Early Mesozoic oceanic subduction-related volcanic rocks, Pindos Basin, Greece. Tectonophysics 192, 273–92.Google Scholar
Pe-Piper, G. & Piper, D. J. W. 2002. The Igneous Rocks of Greece. The Anatomy of an Orogen. Berlin: Gebruder Borntraeger, 573 pp.Google Scholar
Perch-Nielsen, K. 1985a. Mesozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 329426. Cambridge: Cambridge University Press.Google Scholar
Perch-Nielsen, K. 1985b. Cenozoic calcareous nannofossils. In Plankton Stratigraphy (eds Bolli, H. M., Saunders, J. B. & Perch-Nielsen, K.), pp. 427553. Cambridge: Cambridge University Press.Google Scholar
Photiades, A., Carras, N., Bortolotti, V., Fazzuoli, M. & Principi, G. 2007. The Late Early Cretaceous transgression on the laterites in Vourinos and Vermion massifs (Western Macedonia, Greece). Proceedings of the 11th International Congress of the Geological Society of Greece, Athens, May 2007. Bulletin of the Geological Society of Greece 40, 182–90.Google Scholar
Pomoni-Papaioannou, F. & Solakius, N. 1991. Phosphatic hardgrounds and stromatolites from the limestone/shale boundary section at Prossilion (Maastrichtian–Paleocene) in the Parnassus–Ghiona Zone, Central Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 86, 243–54.Google Scholar
Ramsay, J. 1967. Folding and Fracturing of Rocks. New York: McGraw-Hill.Google Scholar
Rassios, A. & Dilek, Y. 2009. Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance. Lithos 108, 207–23.Google Scholar
Rassios, A. & Smith, A. G. 2000. Constraints on the formation and emplacement age of western Greek ophiolites (Vourinos, Pindos and Othris) inferred from deformation structure in peridotites. In Ophiolite and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program (eds Dilek, Y., Moores, E. M., Elthon, D. & Nicolas, A.), pp. 473–83. Geological Society of America, Special Paper no. 349.Google Scholar
Renz, C. 1955. Die Vorneogene Stratigraphie der Normalsedimentaren Formationen Griechenlands. Athens: Institute of Geological Subsurface Research, 637 pp.Google Scholar
Richards, J. P. 2015. Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geology Reviews 70, 323–45.Google Scholar
Richter, D. & Mariolakos, I. 1974a. Neue Erkenntnisse über die Palaeogeographie des Gebietes sudwestlich Levadhia von Beginn der Flysch-Sedimentation. Praktika tis Akadimias Athinon 48, 407–25.Google Scholar
Richter, D. & Mariolakos, I. 1974b. Der Flysch und seine Unterlage im Gebiet westlich Galaxidion. Bulletin of the Geological Society of Greece 10, 413–24.Google Scholar
Richter, D. & Mariolakos, I. 1975. Stratigraphische Untersuchungen an der Kreide/Tertiär-Wende im Gebiet von Delfi-Amfissa-Amfiklia (Parnass-Giona zone, Griechenland). Annales Géologiques des Pays Helléniques 26, 417–34.Google Scholar
Richter, D., Mariolakos, I. & Risch, H. 1978. The main flysch stages of the Hellenides. In Alps, Apennines, Hellenides (eds Closs, H., Roeder, D. & Schmidt, K.), pp. 434–8. Inter-Union Commission on Geodynamics Scientific Report 38. Stuttgart: Schweizerbart.Google Scholar
Richter, D., Müller, C., Hottinger, L. & Risch, H. 1995. Die Flysch-Zonen Griechenlands X. Neue Daten zur Stratigraphie und Paläogeographie des Flysches und seiner Unterlage im Giona-Parnass-Elikon-Gebirge (Parnass-Zone, Griechenland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 197, 295329.Google Scholar
Richter, D., Müller, C. & Mihm, A. 1996. Die Flysch Zonen Griechenlands XII. Das Boeotikum und seine Flysche im Bereich des Iti-Parnass-Elikon-Gebirges, des nordwestlichen Kallidromon-Gebirges und des suedwestlichen Othrys-Gebirges (Mittelgriechenland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 201, 367409.Google Scholar
Richter, D., Müller, C. & Risch, H. 1996. Die Flysch-Zonen Griechenlands XI. Neue Daten zur Stratigraphie und Paläogeographie des Flysches und seiner Unterlage in der Pelagonischen Zone (Griechenland). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 201, 327–66.Google Scholar
Ricou, L.-E., Burg, J.-P., Godfriaux, I. & Ivanov, Z. 1998. The Rhodope and Vardar: the metamorphic and olistostromic paired belts related to the Cretaceous subduction under Europe. Geodinamica Acta 11, 503–11.Google Scholar
Robertson, A. H. F. 2012. Late Palaeozoic–Cenozoic tectonic development of Greece and Albania in the context of alternative reconstructions of Tethys in the Eastern Mediterranean region. International Geology Review 54, 373454.Google Scholar
Robertson, A. H. F. & Degnan, P. J. 1993. Kerassia-Milia Complex: evidence of a Mesozoic–Early Tertiary oceanic basin between the Apulian continental margin and the Parnassus carbonate platform in western Greece. Bulletin of the Geological Society of Greece 28, 233–46.Google Scholar
Robertson, A. H. F., Clift, P. D., Degnan, P. J. & Jones, G. 1991. Palaeogeographic and palaeotectonic evolution of the Eastern Mediterranean Neotethys. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 289343.Google Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction: aspects of the geological evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 174. Geological Society of London, Special Publication no. 17.Google Scholar
Robertson, A. H. F., Dixon, J. E., Brown, S., Collins, A., Morris, A., Pickett, E., Sharp, I. & Ustaömer, T. 1996. Alternative tectonic models for the Late Palaeozoic–Early Tertiary development of Tethys in the Eastern Mediterranean region. In Palaeomagnetism and Tectonics of the Mediterranean Region (eds Morris, A. & Tarling, D. H.), pp. 239–63. Geological Society of London, Special Publication no. 105.Google Scholar
Robertson, A. H. F. & Shallo, M. 2000. Mesozoic–Tertiary tectonic evolution of Albania in its regional Eastern Mediterranean context. Tectonophysics 316, 197254.Google Scholar
Robertson, A. H. F., Trivić, B., Đerić, N. & Bucur, I. 2013. Tectonic development of the Vardar ocean and its margin: evidence from the Republic of Macedonia and Greek Macedonia. Tectonophysics 595–596, 2554.Google Scholar
Roddick, J. C., Cameron, W. A. & Smith, A. G. 1979. Permo-Triassic and Jurassic 40Ar/39Ar ages from Greek ophiolites and associated rocks. Nature 279, 788– 90.Google Scholar
Rosenbaum, G., Lister, G. S. & Duboz, C. 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359, 117–29.Google Scholar
Saccani, E., Bortolotti, V., Marroni, M., Pandolfi, L., Photiades, A. & Principi, G. 2008a. The Jurassic association of backarc basin ophiolites and calc-alkaline volcanics in the Guevgueli Complex (northern Greece): implication for the evolution of the Vardar Zone. Ofioliti 33, 209–27.Google Scholar
Saccani, E., Chiari, M., Bortolotti, V., Photiades, A. & Principi, G. 2015. Geochemistry of volcanic and subvolcanic rocks and biostratigraphy on radiolarian cherts from the Almopias ophiolites and Paikon unit (Western Vardar, Greece). Ofioliti 40, 125.Google Scholar
Saccani, E., Photiades, A., Santato, A. & Zeda, O. 2008b. New evidence for supra-subduction zone ophiolites in the Vardar zone of northern Greece: implications for the tectono-magmatic evolution of the Vardar oceanic ocean. Ofioliti 33, 6585.Google Scholar
Šarić, K., Cvetkoviç, V., Romer, R. L., Christofides, G. & Koroneos, A. 2009. Granitoids associated with East Vardar ophiolites (Serbia, F.Y.R. of Macedonia and northern Greece): origin, evolution and geodynamic significance inferred from major and trace element data and Sr-Nd-Pb isotopes. Lithos 108, 131–50.Google Scholar
Schenker, F. L., Burg, J.-P., Kostopoulos, D., Moulas, E., Larionov, A. & Von Quadt, A. 2014. From Mesoproterozoic magmatism to collisional Cretaceous anatexis: tectonomagmatic history of the Pelagonian Zone, Greece. Tectonics 33, 1552–76.Google Scholar
Schenker, F. L., Fellin, M. G. & Burg, J.-P. 2015. Polyphase evolution of Pelagonia (northern Greece) revealed by geological and fission-track data. Solid Earth 6, 285302.Google Scholar
Schermer, E. R., Lux, D. R. & Burchfiel, B. C. 1990. Temperature-time history of subducted continental crust, Mount Olympos region, Greece. Tectonics 9, 1165–95.Google Scholar
Scherreiks, R., Meléndeu, G., Boudagher-Fadel, M., Fermeli, G. & Bosence, D. 2014. Stratigraphy and tectonics of a time-transgressive ophiolite obduction onto the eastern margin of the Pelagonian platform from Late Bathonian until Valanginian time, exemplified in northern Evvoia, Greece. International Journal of Earth Sciences 103, 2191–216.Google Scholar
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S., Schuster, R., Tischler, M. & Ustaszewski, K. 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss Journal of Geosciences 101, 139–83.Google Scholar
Searle, M. & Cox, J. 1999. Tectonic setting, origin, and obduction of the Oman ophiolite. Bulletin of the Geological Society of America 111, 104–22.Google Scholar
Shafiei, B., Haschke, M. & Shahabpour, J. 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita 44, 265–83.Google Scholar
Shallo, M. 1994. Outline of the Albanian ophiolites. In Albanian Ophiolites–State of the Art and Perspectives (ed. L. Beccaluva), pp. 57–75. Ofioliti, Special Issue 19.Google Scholar
Shallo, M., Kodra, A. & Gjata, K. 1992. Geotectonics of the Albanian ophiolites. In Ophiolites: Oceanic Crustal Analogues (eds Malpas, J., Moores, E. M., Panayiotou, A. & Xenophontos, C.), pp. 165–70. Proceedings of the Symposium ‘Troodos 1987’. Nicosia, Cyprus: Geological Survey Department.Google Scholar
Sissingh, W. 1977. Biostratigraphy of Cretaceous calcareous nannoplankton. Geologie en Mijnbouw 56, 3765.Google Scholar
Schlagintweit, F., Gawlick, H. J., Missoni, S., Hosha, L., Lein, R. & Frisch, W. 2008. The eroded Late Jurassic Kurbnesh carbonate platform in the Mirdita Ophiolite Zone of Albania and its bearing on the Jurassic orogeny of the Neotethys realm. Swiss Journal of Geosciences 101, 125–38.Google Scholar
Schlagintweit, F., Gawlick, H. J., Missoni, S., Lein, R. & Hosha, L. 2006. Late Jurassic to Early Cretaceous dasycladales and benthonic foraminifera from the Munella carbonate platform s.l. of the Mirdita Zone (Albania). In Proceedings of the XVIIIth Congress of the Carpathian-Balkan Geological Association (eds. Sudar, M., Ercegovac, M. & Grubic, A.), pp. 527–30. National Committee of the Carpathian–Balkan Geological Association; Belgrade: Serbian Geological Society.Google Scholar
Skourlis, K. & Doutsos, T. 2003. The Pindos Fold-and-thrust belt (Greece): inversion kinematics of a passive continental margin. International Journal of Earth Sciences 92, 891903.Google Scholar
Smith, A. G. 1993. Tectonic significance of the Hellenic-Dinaric ophiolites. In Magmatic Processes and Plate Tectonics (eds Prichard, H. M., Alabaster, T., Harris, N. B. W. & Neary, C. R.), pp. 213–43. Geological Society of London, Special Publication no. 76.Google Scholar
Smith, A. G. & Spray, J. G. 1984. A half-ridge transform model for the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 629–44. Geological Society of London, Special Publication no. 17.Google Scholar
Smuc, A. & Goričan, Š. 2005. Jurassic sedimentary evolution of a carbonate platform into a deep-water basin, Mt. Mangart (Slovenian–Italian Border). Rivista Italiana di Paleontologia e Stratigrafia 111, 4570.Google Scholar
Solakius, N., Pomoni-Papaioannou, F. & Marangoudakis, N. 1989. Planktic foraminiferal biostratigraphy and sedimentology of the Cretaceous–Tertiary boundary in the Sernikaki section (the Parnassus–Ghiona Zone, central Greece). Revista Española de Micropaleontologia 21, 373–89.Google Scholar
Spray, J. G., Bébien, J., Rex, D. C. & Roddick, J. C. 1984. Age constraints on the igneous and metamorphic evolution of the Hellenic-Dinaric ophiolites. In The Geological Evolution of the Eastern Mediterranean (eds Dixon, J. E. & Robertson, A. H. F.), pp. 619–27. Geological Society of London, Special Publication no. 17.Google Scholar
Spray, J. G. & Roddick, J. C. 1980. Petrology and 40Ar/39Ar geochronology of the some Hellenic sub-ophiolite metamorphic rocks. Contributions to Mineralogy and Petrology 72, 4355.Google Scholar
Stais, A. & Ferrière, J. 1994. Peonias (Axios-Vardar oriental; Hellenides): données nouvelles sur les séries ante-Cretacé et interpretations géodynamiques. Bulletin of the Geological Society of Greece 30, 121–32.Google Scholar
Stampfli, G. M. & Borel, G. 2004. The TRANSMED transects in space and time: constraints on the paleotectonic evolution of the Mediterranean domain. In The TRANSMED Atlas, The Mediterranean Region from Crust to Mantle (eds Cavazza, W., Roure, F. M., Spakman, W., Stampfli, G. M. & Ziegler, P. A.), pp. 5390. Berlin-Heidelberg: Springer-Verlag.Google Scholar
Stampfli, G., Marcoux, J. & Baud, A. 1991. Tethyan margins in space and time. Palaeogeography, Palaeoclimatology, Palaeoecology 87, 373409.Google Scholar
Steuber, T. 1993. Late Cretaceous paleogeography and hippuritid biostratigraphy of Beotia (Greece). Bulletin of the Geological Society of Greece 28, 3953.Google Scholar
Steuber, T. 1999. Cretaceous rudists of Boeotia, Central Greece. Special Papers in Palaeontology 61, 1229.Google Scholar
Steuber, T., Gotzes, R., Raeder, M. & Walter, J. 1993. Palaeogeography of the western Pelagonian continental margin in Boeotia (Greece) during the Cretaceous – biostratigraphy and isotopic compositions (δ13C, δ18O) of calcareous deposits. Palaeogeography, Palaeoclimatology, Palaeoecology 102, 253–71.Google Scholar
Steuber, T., Raeder, M. & Walter, J. 1994. Parnassus–Pelagonian transitional facies recorded in the Cretaceous Paleokastron section (W. Beotia, central Greece). Bulletin of the Geological Society of Greece 30, 177–85.Google Scholar
Taylor, B., Weiss, J. R., Goodliffe, A. M., Sachpazi, M., Laigle, M. & Hirn, A. 2011. The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophysical Journal International 185, 1189–219.Google Scholar
Terry, J. & Mercier, M. 1971. Sur l'existence d'une série détritique berriasienne intercalée entre la nappe des ophiolites et le flysch éocène de la nappe du Pinde (Pinde septentrional, Grèce). Comptes Rendus Sommaires de la Société géologique de France 2, 71–3.Google Scholar
Thiébault, F. 1982. Évolution géodynamique des Hellénides externes en Péloponnèse méridionale (Grèce). Société Géologique du Nord 6, 1574.Google Scholar
Thiébault, F., Fleury, J. J., Clément, B. & Dégardin, J. M. 1994. Paleogeographic and paleotectonic implications of clay mineral distribution in late Jurassic – early Cretaceous sediments of the Pindos–Olonos and Beotian Basins, Greece. Palaeogeography, Palaeoclimatology, Palaeoecology 108, 2340.Google Scholar
Turpaud, P. & Reischmann, T. 2010. Characterisation of igneous terranes by zircon dating: implications for UHP occurrences and suture identification in the Central Rhodope, northern Greece. International Journal of Earth Science 99, 567–91.Google Scholar
Ustaszewski, K., Kounov, A., Schmid, S. M., Schaltegger, U., Krenn, E., Frank, W. & Fügenschuh, B. 2010. Evolution of the Adria-Europe plate boundary in the northern Dinarides: from continent-continent collision to back-arc extension. Tectonics 29, TC6017, doi: 10.1029/2010TC002668.Google Scholar
Ustaszewski, K., Schmid, S. M., Lugovic, B., Schuster, R., Schaltegger, U., Bernoulli, D., Hottinger, L., Kounov, A., Fügenschuh, B. & Schefer, S. 2009. Late Cretaceous intra-oceanic magmatism in the internal Dinarides (northern Bosnia and Herzegovina): implications for the collision of the Adriatic and European plates. Lithos 108, 106–25.Google Scholar
Valeton, I., Biermann, M., Reche, R. & Rosenberg, F. 1987. Genesis of nickel laterites and bauxites in Greece during the Jurassic and Cretaceous, and their relation to ultrabasic parent rocks. Ore Geology Review 2, 359404.Google Scholar
van Hunen, J. & Allen, M. B. 2011. Continental collision and slab break-off: a comparison of 3-D numerical models with observations. Earth and Planetary Science Letters 302, 2737.Google Scholar
von Quadt, A., Moritz, R., Peytcheva, I. & Heinrich, C. A. 2005. Geochronology and geodynamics of Late Cretaceous magmatism and Cu–Au mineralization in the Panagyurishte region of the Apuseni–Banat–Timok–Srednogorie belt, Bulgaria. Ore Geology Reviews 27, 95126.Google Scholar
Wagreich, M., Pavlopoulos, A., Faupl, P. & Migiros, G. 1996. Age and significance of Upper Cretaceous siliciclastic turbidites in the central Pindos Mountains, Greece. Geological Magazine 133, 325–31.Google Scholar
Wigniolle, E. 1977. Données nouvelles sur la géologie du massif de l'Iti (Grèce continentale). Annales de la Société Géologique du Nord 47, 239–51.Google Scholar
Willingshofer, E., Neubauer, F. & Cloetingh, S. 1999. The significance of Gosau-type basins for the Late Cretaceous history of the Alpine-Carpathian Belt. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy 24, 687–95.Google Scholar
Wortel, M. J. R. & Spakman, W. 2000. Subduction and slab detachment in the Mediterranean–Carpathian region. Science 290, 1910–7.Google Scholar
Yarwood, G. A. & Dixon, J. E. 1977. Lower Cretaceous thrusting in the Pelagonian rocks of the High Pieria, Greece. Proceedings of the VI Colloquium on the Geology of the Aegean Region, Athens 1, 269– 80.Google Scholar
Zimmerman, J. 1972. Emplacement of the Vourinos ophiolite complex, northern Greece. In Studies in Earth and Space Sciences (eds Shagam, R., Hargraves, R. B., Morgan, W. J., Houten, F. B. Van, Burk, C. A., Holland, H. D. & Hollister, L. C.), pp. 225–39. Geological Society of America, Memoir no. 132.Google Scholar
Zimmerman, J. & Ross, J. V. 1976. Structural evolution of the Vardar root zone, northern Greece. Geological Society of America Bulletin 87, 1547–50.Google Scholar
Zimmerman, A., Stein, H., Hannah, J., Koželj, D., Bogdanov, K. & Berza, T. 2008. Tectonic configuration of the Apuseni–Banat–Timok–Srednogorie belt, Balkans-South Carpathians, constrained by high precision Re–Os molybdenite ages. Mineralium Deposita 43, 121.Google Scholar