Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-01T06:09:20.687Z Has data issue: false hasContentIssue false

The formation of travertine shrubs: Mammoth Hot Springs, Wyoming

Published online by Cambridge University Press:  01 May 2009

Allan Pentecost
Affiliation:
Division of Biosphere Sciences, King's College London, Campden Hill Road, London W8 7AH, U.K.

Abstract

The structure and microbiology of active travertines is described from Canary and Minerva springs, with emphasis on ‘shrubs’ growing in terracette pools. These dendritic growths of aragonite consist of intricately branched sprays containing thousands of radiating needles. Shrub microstructure could be explained by the principle of ‘Keimauslese” and the preferential elongation of sharp protuberances in a rapidly depositing environment.

The shrubs, and other active travertines, contain unicellular and filamentous bacteria. Estimates of total bacteria numbers ranged from 0.6−1.7 × 105 mm−3 but biomass was low, and always less than 1% of the travertine by weight. No evidence was found to indicate that bacteria played a role in shrub growth or morphology, but crystal trapping on bacterial strings may influence travertine fabrics on cascades. The shrubs are considered to have developed by inorganic processes, in hot spring waters supersaturated with aragonite.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, E. T. 1934. The agency of algae in the deposition of travertine and silica from thermal waters. American Journal of Science 28, 373–89.CrossRefGoogle Scholar
Allen, E. T. & Day, A. L. 1935. Hot Springs of Yellowstone National Park. Carnegie Institute of Washington Publication No. 466. 525 pp.Google Scholar
Bargar, K. E. 1978. Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming. United States Geological Survey Bulletin no. 1444, 55 pp.Google Scholar
Bentley, W. A. & Humphreys, W. J. 1931. Snow Crystals. New York: McGraw Hill Co. 226 pp.Google Scholar
Casanova, J. 1986. East African rift stromatolites. In Sedimentation in the African Rifts (ed. Frostick, L. E. Renaut, R. W. Reid, I. and Tiercelin, J. J.), pp. 201–10. Geological Society of London Special Publication No. 25.Google Scholar
Castenholz, R. W. 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microbial Ecology 3, 79105.CrossRefGoogle ScholarPubMed
Castenholz, R. W. 1984. Composition of hot spring microbial mats: a summary. In Microbial Mats: Stromatolites (ed. Castenholz, R. W. Cohen, Y. and Halvorson, H. O.), pp. 109–19. New York: A. R. Liss Inc.Google Scholar
Chafetz, H. S. & Folk, R. L. 1984. Travertines: depositional morphology and the bacterially constructed constituents. Journal of Sedimentary Petrology 54, 289316.Google Scholar
Cohn, F. 1862. Über die Algen des Karlsbader Sprudels, mit Rucksicht auf die Bildung des Sprudelsinters. Jahresbericht der Schlesischen Gesellschaft für Vaterlandischen Kultur 2, 3555.Google Scholar
Dedek, J. 1966. Le Carbonate de Chaux. Louvain: Libraire Universitaire.Google Scholar
Emig, W. H. 1917. The travertine deposits of the Arbuckle Mountains, Oklahoma, with reference to the plant agencies concerned in their formation. Bulletin of the Oklahoma Geological Survey 29, 975.Google Scholar
Folk, R. L., Chafetz, H. S. & Tiezzi, P. A. 1985. Bizarre forms of depositional and diagenetic calcite in hot-spring travertines, central Italy. In Carbonate Cements (ed. N., Schneidermann and P., Harris), pp. 349–69. Society of Economic Paleontologists and Mineralogists Special Publication no. 36.CrossRefGoogle Scholar
Friedman, I. 1970. Some investigations of the deposition of travertine from hot springs. 1. The isotopic chemistry of a travertine-depositing spring. Geochimica et Cosmo-chimica Acta 34, 1303–15.CrossRefGoogle Scholar
Giovannoni, S. J., Revsbech, N. P., Ward, D. M. & Castenholz, R. W. 1987. Obligately phototrophic Chloroflexus: primary production in anaerobic hot spring microbial mats. Archives of Microbiology 147, 8087.CrossRefGoogle Scholar
Golubic, S. 1973. The relationship between blue-green algae and carbonate deposits. In The Biology of Blue-green Algae (ed. Carr, N. G. and Whitton, B. A.), pp. 434–72. Oxford: BlackwellsGoogle Scholar
Golubic, S. & Focke, J. W. 1978. Phormidium laminosum Howe: identity and significance of a modern stromatolite building microorganism. Journal of Sedimentary Petrology 48, 751–64.Google Scholar
Kitano, Y. 1963. Geochemistry of calcareous deposits found in hot springs. Journal of Earth Sciences, Nagoya University 11, 68100.Google Scholar
Krumbein, W. E. 1979. Calcification by bacteria and algae. In Biogeochemical Cycling of Mineral-Forming Elements (ed. Trudinger, P. A. and Swaine, P. A.), pp. 4768. New York: Elsevier.CrossRefGoogle Scholar
Leitmeier, H. 1915. Zur Kenntnis der Carbonate. II. Neues Jahrbuch für Mineralogie, Beilageband 40, 655700.Google Scholar
Lippmann, F. 1973. Sedimentary Carbonate Minerals. Berlin: Springer-Verlag. 228 pp.CrossRefGoogle Scholar
Lorah, M. M. & Herman, J. S. 1988. The chemical evolution of a travertine-depositing stream: geochemical processes and mass transfer reactions. Water Resources Research 24, 1541–552.CrossRefGoogle Scholar
Lowenstam, H. A. 1986. Mineralization processes in monerans and protoctists. In Biomineralization of Lower Plants and Animals (ed. Leadbeater, B. S. C. and Riding, R.), pp. 118. Oxford: Clarendon Press.Google Scholar
Oppenheimer, C. H. 1961. Note on the formation of spherical aragonitic bodies in the presence of bacteria from the Bahama Bank. Geochimica et Cosmochimica Acta 23, 295–6.CrossRefGoogle Scholar
Palache, C., Berman, L. & Frondel, C. 1951. Dana's System of Mineralogy, vol. 2, 7th edition. New York, London: Wiley.Google Scholar
Pedley, H. M. 1987. The Flandrian (Quaternary) Caerwys Tufa, North Wales: an ancient barrage tufa deposit. Proceedings of the Yorkshire Geological Society 46, 141–52.CrossRefGoogle Scholar
Pentecost, A. 1988. Growth and calcification of the cyanobacterium Homoeothrix Crustacea. Journal of General Microbiology 134, 2665–71.Google Scholar
Pentecost, A. & Riding, R. 1986. Calcification in cyanobacteria. In Biomineralization of Lower Plants and Animals (ed. Leadbeater, B. S. C. and Riding, R.), pp. 7390. Oxford: Clarendon Press.Google Scholar
Pentecost, A. & Bauld, J. 1988. Nucleation of calcite on the sheaths of cyanobacteria using a simple diffusion cell. Geomkrobiology Journal 6, 129–35.Google Scholar
Pentecost, A. & Terry, C. 1989. Inability to demonstrate calcite precipitation by bacterial isolates from travertine. Geomkrobiology Journal 6, 185–94.Google Scholar
Pobeguin, T. 1954. Contribution a l'étude des carbonates de calcium. Precipitation du calcaire par les végétaux. Comparison avec le monde animal. Annates des Sciences Naturelles, Botanique et Biologie Végétale Série 11, 15, 29109.Google Scholar
Thrailkill, J. 1976. Speleothems. In Stromatolites (ed. Walter, M. R.), pp. 7386. Amsterdam: Elsevier.CrossRefGoogle Scholar
Walcott, C. D. 1914. Precambrian Algonkian flora. Smithsonian Miscellaneous Collections 64, 77156.Google Scholar
Walter, M. R., Bauld, J. & Brock, T. D. 1976. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilld) from hot springs in Yellow-stone National Park. In Stromatolites (ed. Walter, M. R.), pp. 273310. Amsterdam: Elsevier.CrossRefGoogle Scholar
Weed, W. H. 1889. Formation of travertine and siliceous sinter by vegetation of hot springs. United States Geological Survey 9th Annual Report 1887–1888, 613–76.Google Scholar