Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T10:53:01.745Z Has data issue: false hasContentIssue false

First freshwater gastropod preserved in amber suggests long-distance dispersal during the Cretaceous Period

Published online by Cambridge University Press:  29 April 2021

Tingting Yu*
Affiliation:
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing210008, China University of Chinese Academy of Sciences, Beijing100049, China
Thomas A. Neubauer
Affiliation:
Department of Animal Ecology and Systematics, Justus Liebig University, 35392Giessen, Germany Naturalis Biodiversity Center, 2300 RA Leiden, The Netherlands
Adrienne Jochum
Affiliation:
Naturhistorisches Museum der Burgergemeinde Bern, 3005 Bern, Switzerland Senckenberg Forschungsinstitut und Naturmuseum, 60325 Frankfurt am Main, Germany
*
Author for correspondence: Tingting Yu, Email: [email protected]

Abstract

Burmese amber continues to provide unique insights into the terrestrial biota inhabiting tropical equatorial forests during mid-Cretaceous time. In contrast to the large amount and great diversity of terrestrial species retrieved so far, aquatic biota constitute rare inclusions. Here we describe the first freshwater snail ever preserved in amber. The new species Galba prima sp. nov. belongs in the family Lymnaeidae, today a diverse and near globally distributed family. Its inclusion in terrestrial amber is probably a result of the amphibious lifestyle typical of modern representatives of the genus. The finding of a freshwater snail on the Burma Terrane, back then an island situated at some 1500 km from mainland Asia, has implications for the dispersal mechanisms of Mesozoic lymnaeids. The Cenomanian species precedes the evolution of waterfowl, which are today considered a main vector for long-distance dispersal. In their absence, we discuss several hypotheses to explain the disjunct occurrence of the new species.

Type
Rapid Communication
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

These authors contributed equally to this work.

References

Aksenova, OV, Bolotov, IN, Gofarov, MYu, Kondakov, AV, Vinarski, MV, Bespalaya, YV, Kolosova, YS, Palatov, DM, Sokolova, SE, Spitsyn, VM, Tomilova, AA, Travina, OV and Vikhrev, IV (2018) Species richness, molecular taxonomy and biogeography of the Radicine Pond Snails (Gastropoda: Lymnaeidae) in the Old World. Scientific Reports 8, 11199, doi: 10.1038/s41598-018-29451-1.CrossRefGoogle ScholarPubMed
Anistratenko, VV, Vinarski, MV, Anistratenko, OYu, Furyk, YI and Degtyarenko, EV (2018) New data on pond snails (Mollusca: Gastropoda: Lymnaeidae) inhabiting the Ukrainian Transcarpathian: diversity, distribution and ecology. Ecologica Montenegrina 18, 114, doi: 10.37828/EM.2018.18.1.CrossRefGoogle Scholar
Baker, FC (1911) The Lymnaeidae of North and Middle America, recent and fossil. Chicago: Chicago Academy of Sciences, 539 p.Google Scholar
Baker, FC (1928) The freshwater mollusca of Wisconsin. Part I. Gastropoda. Wisconsin Geological and Natural History Survey Bulletin 70, 1507.Google Scholar
Bandel, K (1991) Gastropods from brackish and fresh water of the Jurassic - Cretaceous transition (a systematic reevaluation). Berliner geowissenschaftliche Abhandlungen, A 134, 955.Google Scholar
Bandel, K and Riedel, F (1994) The late Cretaceous gastropod fauna from Ajka (Bakony Mountains, Hungary): a revision. Annalen des Naturhistorischen Museums in Wien, Serie A 96, 165.Google Scholar
Bestwick, J, Unwin, DM, Butler, RJ, Henderson, DM and Purnell, MA (2018) Pterosaur dietary hypotheses: a review of ideas and approaches. Biological Reviews 93, 2021–48, doi: 10.1111/brv.12431.CrossRefGoogle ScholarPubMed
Beu, AG, Marshall, BA and Reay, MB (2014) Mid-Cretaceous (Albian–Cenomanian) freshwater Mollusca from the Clarence Valley, Marlborough, New Zealand, and their biogeographical significance. Cretaceous Research 49, 134–51, doi: 10.1016/j.cretres.2014.02.011.CrossRefGoogle Scholar
Burmeister, H (1837) Handbuch der Naturgeschichte, vol. 2. Zoologie. Berlin: Enslin, xii + 369–858 pp.Google Scholar
Claramunt, S and Cracraft, J (2015) A new time tree reveals Earth history’s imprint on the evolution of modern birds. Science Advances 1, e1501005, doi: 10.1126/sciadv.1501005.CrossRefGoogle ScholarPubMed
Cockerell, TDA (1916) Insects in Burmese amber. American Journal of Science, Fourth Series 42, 135–8, doi: 10.2475/ajs.s4-42.248.135.Google Scholar
Correa, AC, Escobar, JS, Durand, P, Renaud, F, David, P, Jarne, P, Pointier, J-P and Hurtrez-Boussès, S (2010) Bridging gaps in the molecular phylogeny of the Lymnaeidae (Gastropoda: Pulmonata), vectors of Fascioliasis. BMC Evolutionary Biology 10, 381, doi: 10.1186/1471-2148-10-381.CrossRefGoogle Scholar
Cotton, BC (1942) Some Australian freshwater Gasteropoda. Transactions of the Royal Society of South Australia 66, 7582.Google Scholar
Cruickshank, RD and Ko, K (2003) Geology of an amber locality in the Hukawng Valley, Northern Myanmar. Journal of Asian Earth Sciences 21, 441–55, doi: 10.1016/S1367-9120(02)00044-5.CrossRefGoogle Scholar
Cuvier, G (1795) Second Mémoire sur l’organisation et les rapports des animaux à sang blanc, dans lequel on traite de la structure des Mollusques et de leur division en ordre, lu à la société d’Histoire Naturelle de Paris, le 11 prairial an troisième. Magasin Encyclopédique, ou Journal des Sciences, des Lettres et des Arts 2, 433–49.Google Scholar
Dell, RK (1956) The fresh-water mollusca of New Zealand. Parts II and III. Transactions of the Royal Society of New Zealand 84, 7190.Google Scholar
Dillon, RT (2000) The Ecology of Freshwater Molluscs. Cambridge: Cambridge University Press, 509 p.CrossRefGoogle Scholar
Dörge, N, Walther, C, Beinlich, B and Plachter, H (1999) The significance of passive transport for dispersal in terrestrial snails (Gastropoda, Pulmonata). Zeitschrift für Ökologie und Naturschutz 8, 110.Google Scholar
Dybowski, B (1913) Bemerkungen und Zusätze zu der Arbeit von Dr. W. Dybowski “Mollusken aus der Uferregion des Baikalsees”. Ezhegodnik Zoologicheskogo Muzeja Imperatorskoy Akademii Nauk 17, 165218.Google Scholar
Esu, D and Girotti, O (2018) Valvata mathiasi sp. nov. (Gastropoda: Heterobranchia: Valvatidae) from the Lower Pliocene of the Val di Pesa (Tuscany, Central Italy). Archiv für Molluskenkunde 147, 4954, doi: 10.1127/arch.moll/147/049-054.CrossRefGoogle Scholar
Falk, AR (2011) Tracking Mesozoic birds across the world. Journal of Systematic Palaeontology 9, 8590, doi: 10.1080/14772019.2010.512616.CrossRefGoogle Scholar
Férussac, AEJPJFdd (1821–1822) Tableaux systématiques des animaux mollusques classés en familles naturelles, dans lesquels on a établi la concordance de tous les systèmes; suivis d’un prodrome général pour tous les mollusques terrestres ou fluviatiles, vivants ou fossiles. Paris, Londres: Bertrand, Sowerby, 110 p.Google Scholar
Fleming, TH and Lips, KR (1991) Angiosperm endozoochory: were pterosaurs Cretaceous seed dispersers? The American Naturalist 138, 1058–65.CrossRefGoogle Scholar
Ghosh, P, Prasanna, K, Banerjee, Y, Williams, IS, Gagan, MK, Chaudhuri, A and Suwas, S (2018) Rainfall seasonality on the Indian subcontinent during the Cretaceous greenhouse. Scientific Reports 8, 8482, doi: 10.1038/s41598-018-26272-0.CrossRefGoogle ScholarPubMed
Glöer, P (2019) The Freshwater Gastropods of the West-Palaearctis. Volume I. Fresh- and brackish waters except spring and subterranean snails. Identification key, Anatomy, Ecology, Distribution. Hetlingen: privately published by P Glöer, 399 p.Google Scholar
Gould, AA (1859) Descriptions of shells collected by the North Pacific Exploring Expedition. Proceedings of the Boston Society of Natural History 7, 4045.CrossRefGoogle Scholar
Gray, J (1988) Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 62, 1214.CrossRefGoogle Scholar
Green, AJ and Figuerola, J (2005) Recent advances in the study of long-distance dispersal of aquatic invertebrates via birds. Diversity and Distributions 11, 149–56, doi: 10.1111/j.1366-9516.2005.00147.x.CrossRefGoogle Scholar
Grimaldi, D, Bonwich, E, Delannoy, M and Doberstein, S (1994) Electron microscopic studies of mummified tissues in amber fossils. American Museum Novitates 3097, 131.Google Scholar
Haldeman, SS (1841) A monograph of the Limniades and other freshwater univalve shells of Northern America. Limnea. Philadelphia: J. Dobson, 16 p.Google Scholar
Harzhauser, M, Mandic, O, Neubauer, TA, Georgopoulou, E and Hassler, A (2016) Disjunct distribution of the Miocene limpet-like freshwater gastropod genus Delminiella . Journal of Molluscan Studies 82, 129–36, doi: 10.1093/mollus/eyv040.Google Scholar
Haug, JT, Azar, D, Ross, A, Szwedo, J, Wang, B, Arillo, A, Baranov, V, Bechteler, J, Beutel, R, Blagoderov, V, Delclòs, X, Dunlop, J, Feldberg, K, Feldmann, R, Foth, C, Fraaije, RHB, Gehler, A, Harms, D, Hedenäs, L, Hyžný, M, Jagt, JWM, Jagt-Yazykova, EA, Jarzembowski, E, Kerp, H, Khine, PK, Kirejtshuk, AG, Klug, C, Kopylov, DS, Kotthoff, U, Kriwet, J, McKellar, RC, Nel, A, Neumann, C, Nützel, A, Peñalver, E, Perrichot, V, Pint, A, Ragazzi, E, Regalado, L, Reich, M, Rikkinen, J, Sadowski, E-M, Schmidt, AR, Schneider, H, Schram, FR, Schweigert, G, Selden, P, Seyfullah, LJ, Solórzano-Kraemer, MM, Stilwell, JD, van Bakel, BWM, Vega, FJ, Wang, Y, Xing, L and Haug, C (2020) Comment on the letter of the Society of Vertebrate Paleontology (SVP) dated April 21, 2020 regarding “Fossils from conflict zones and reproducibility of fossil-based scientific data”: Myanmar amber. Paläontologische Zeitschrift 94, 431–7, doi: 10.1007/s12542-020-00524-9.CrossRefGoogle Scholar
Henwood, A (1992) Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. Palaios 7, 203–12, doi: 10.2307/3514931.CrossRefGoogle Scholar
Huckriede, R (1967) Molluskenfaunen mit limnischen und brackischen Elementen aus Jura, Serpulit und Wealden NW-Deutschlands und ihre paläogeographische Bedeutung. Geologisches Jahrbuch, Beiheft 67, 1263.Google Scholar
Isaji, S (2010) Terrestrial and freshwater pulmonate gastropods from the Early Cretaceous Kuwajima Formation, Tetori Group, Japan. Paleontological Research 14, 233–43, doi: 10.2517/1342-8144-14.4.233.CrossRefGoogle Scholar
Jeffreys, JG (1830) A synopsis on the testaceous pneumonobranchous Mollusca of Great Britain. Transactions of the Linnean Society of London 16, 323–92.CrossRefGoogle Scholar
Kadolsky, D (1995) Stratigraphie und Molluskenfaunen von “Landschneckenkalk” und “Cerithienschichten” im Mainzer Becken (Oberoligozän bis Untermiozän?), 2: Revision der aquatischen Mollusken des Landschneckenkalkes. Archiv für Molluskenkunde 124, 155.CrossRefGoogle Scholar
Kano, Y, Fukumori, H, Brenzinger, B and Warén, A (2013) Driftwood as a vector for the oceanic dispersal of estuarine gastropods (Neritidae) and an evolutionary pathway to the sunken-wood community. Journal of Molluscan Studies 79, 378–82, doi: 10.1093/mollus/eyt032.CrossRefGoogle Scholar
Kappes, H and Haase, P (2012) Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences 74, 114, doi: 10.1007/s00027-011-0187-6.CrossRefGoogle Scholar
Kendall, SB (1949) Bionomics of Limnaea truncatula and the Parthenitae of Fasciola hepatica under drought conditions. Journal of Helminthology 23, 5768, doi: 10.1017/S0022149X00032375.CrossRefGoogle Scholar
Kolenda, K, Najbar, A, Kusmierek, N and Maltz, TK (2017) A possible phoretic relationship between snails and amphibians. Folia Malacologica 25, 281–5, doi: 10.12657/folmal.025.019.CrossRefGoogle Scholar
Kruglov, ND and Starobogatov, YaI (1981) A new genus of the Lymnaeidae and taxonomy of the subgenus Omphiscola (Lymnaea) (Pulmonata, Gastropoda). Zoologicheskiy Zhurnal 60, 965–77.Google Scholar
Kruglov, ND and Starobogatov, YaI (1985) The volume of the subgenus Galba and of other similar subgenera of the genus Lymnaea (Gastropoda, Pulmonata). Zoologicheskiy Zhurnal 64, 2435.Google Scholar
Liu, D, Chiappe, LM, Serrano, F, Habib, M, Zhang, Y and Meng, Q (2017) Flight aerodynamics in enantiornithines: information from a new Chinese Early Cretaceous bird. PLoS ONE 12, e0184637, doi: 10.1371/journal.pone.0184637.CrossRefGoogle ScholarPubMed
Martinson, GG (1956) Opredelitel’ mezozoyskikh i kaynozoyskikh presnovodnykh mollyuskov Vostochnoy Sibiri. Moskva, Leningrad: Izdatel’stvo Akademii Nauk SSSR, 92 p.Google Scholar
Matthews, KJ, Maloney, KT, Zahirovic, S, Williams, SE, Seton, M and Müller, RD (2016) Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change 146, 226–50, doi: 10.1016/j.gloplacha.2016.10.002.CrossRefGoogle Scholar
Measey, GJ, Vences, M, Drewes, RC, Chiari, Y, Melo, M and Bourles, B (2007) Freshwater paths across the ocean: molecular phylogeny of the frog Ptychadena newtoni gives insights into amphibian colonization of oceanic islands. Journal of Biogeography 34, 720, doi: 10.1111/j.1365-2699.2006.01589.x.CrossRefGoogle Scholar
Meek, FB (1860) Descriptions of new fossil remains collected in Nebraska and Utah, by the exploring expeditions under the command of Captain J. H. Simpson, of U. S. Topographical Engineers [extracted from that officer’s forthcoming report]. Proceedings of the Academy of Natural Sciences of Philadelphia 12, 308–15.Google Scholar
Mills, BJW, Krause, AJ, Scotese, CR, Hill, DJ, Shields, GA and Lenton, TM (2019) Modelling the long-term carbon cycle, atmospheric CO2, and Earth surface temperature from late Neoproterozoic to present day. Gondwana Research 67, 172–86, doi: 10.1016/j.gr.2018.12.001.CrossRefGoogle Scholar
Montfort, PD de (1810) Conchyliologie systématique et classification méthodique de coquilles; offrant leurs figures, leur arrangement générique, leurs descriptions caractéristiques, leurs noms; ainsi que leur synonymie en plusieurs langues. Ouvrage destiné à faciliter lʼétude des coquilles, ainsi que leur disposition dans les cabinets d’histoire naturelle. Coquilles univalves, non cloisonnées. Tome second. Paris: Schoell, 676 p.Google Scholar
Müller, OF (1773–1774) Vermium terrestrium et fluviatilium historia, seu animalium Infusoriorum, Helminthicorum et Testaceorum non marinorum succincta historia. Havniae et Lipsiae: Heineck & Faber, xxxiii + 135, xxxvi + 214 pp.Google Scholar
Økland, J (1990) Lakes and Snails. Environment and Gastropoda in 1,500 Norwegian Lakes, Ponds and Rivers. Oegstgeest: Backhuys, 516 p.Google Scholar
Ożgo, M, Örstan, A, Kirschenstein, M and Cameron, R (2016) Dispersal of land snails by sea storms. Journal of Molluscan Studies 82, 341–3, doi: 10.1093/mollus/eyv060.CrossRefGoogle Scholar
Pan, H (1977) Mesozoic and Cenozoic fossil Gastropoda from Yunnan. In Mesozoic Fossils from Yunnan 2 (ed. Nanjing Institute of Geology and Palaeontology), pp. 83152. Beijing: Science Press.Google Scholar
Pan, H and Zhu, X (2007) Early Cretaceous non-marine gastropods from the Xiazhuang Formation in North China. Cretaceous Research 27, 215–24, doi: 10.1016/j.cretres.2006.12.001.CrossRefGoogle Scholar
Poinar, G, Lambert, JB and Wu, Y (2007) Araucarian source of fossiliferous Burmese amber: spectroscopic and anatomical evidence. Journal of the Botanical Research Institute of Texas 1, 449–55.Google Scholar
Poinar, GOJr and Hess, R (1985) Preservative qualities of recent and fossil resins: electron micrograph studies on tissue preserved in Baltic amber. Journal of Baltic Studies 16, 222–30, doi: 10.1080/01629778500000141.CrossRefGoogle Scholar
Ponder, WF, Hallan, A, Shea, ME, Clark, SA, Richards, K, Klunzinger, MW and Kessner, V (2020) Australian Freshwater Molluscs. Revision 1. Available at https://keys.lucidcentral.org/keys/v3/freshwater_molluscs/ (accessed 4 December 2020).Google Scholar
Poulsen, CJ, Seidov, D, Barron, EJ and Peterson, WH (1998) The impact of paleogeographic evolution on the surface oceanic circulation and the marine environment within the mid-Cretaceous Tethys. Paleoceanography 13, 546–59.CrossRefGoogle Scholar
Quoy, JRC and Gaimard, JP (1832–1835) Voyage de découvertes de l’Astrolabe exécuté par ordre du Roi, pendant les années 1826–1829, sous le commandement de M. J. Dumont d’Urville. Zoologie. Paris: Tastu.Google Scholar
Rafinesque, CS (1815) Analyse de la nature ou tableau de l’univers et des corps organisés. Palermo: privately published by CS Rafinesque, 223 p.Google Scholar
Rafinesque, CS (1819) Prodrome de 70 nouveaux genres d’animaux découverts dans l’intérieur des Etas-Unis d’Amérique, durant l’année 1818. Journal de Physique, de Chimie et d’Histoire Naturelle 88, 417–29.Google Scholar
Rees, WJ (1965) The aerial dispersal of Mollusca. Journal of Molluscan Studies 36, 269–82, doi: 10.1093/oxfordjournals.mollus.a064955.CrossRefGoogle Scholar
Reid, DG (1986) The Littorinid Molluscs of Mangrove Forests in the Indo-Pacific Region. London: British Museum, 227 p.Google Scholar
Repelin, J (1902) Description des faunes et des gisements du Cénomanien saumâtre ou d’eau douce du Midi de la France. Annales du Musée d’histoire naturelle de Marseille. Section de Géologie 7, 1133.Google Scholar
Ross, AJ (2019) Burmese (Myanmar) amber checklist and bibliography 2018. Palaeoentomology 2, 2284, doi: 10.11646/palaeoentomology.2.1.5.CrossRefGoogle Scholar
Rossmässler, EA (1835–1837) Iconographie der Land- und Süsswasser-Mollusken, mit vorzüglicher Berücksichtigung der europäischen noch nicht abgebildeten Arten. 1. Band. Dresden, Leipzig: Arnold. Heft 1: 132 p. (1835); Heft 2: 26 p. (1835); Heft 3: 33 p. (1836); Heft 4: 27 p. (1836); Hefte 5–6: 70 p. (1837).Google Scholar
Schmidt, AR, Schönborn, W and Schäfer, U (2004) Diverse fossil amobae in German Mesozoic amber. Palaeontology 47, 185–97.CrossRefGoogle Scholar
Schrank, FvP (1803) Fauna Boica. Durchgedachte Geschichte der in Baiern einheimischen und zahmen Thiere. Dritten und lezten Bandes zweyte Abtheilung. Landshut: Krüll, 372 p.Google Scholar
Serrano, FJ, Chiappe, LM, Palmqvist, P, Figueirido, B, Marugán-Lobón, J and Sanz, JL (2018) Flight reconstruction of two European enantiornithines (Aves, Pygostylia) and the achievement of bounding flight in Early Cretaceous birds. Palaeontology 61, 359–68, doi: 10.1111/pala.12351.CrossRefGoogle Scholar
Servain, G (1882) Histoire Malacologique du lac Balaton en Hongrie. Paris: Paul Klincksieck, 125 p.Google Scholar
Shi, G, Grimaldi, DA, Harlow, GE, Wang, J, Wang, J, Yang, M, Lei, W, Li, Q and Li, X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research 37, 155–63, doi: 10.1016/j.cretres.2012.03.014.CrossRefGoogle Scholar
Sitnikova, TYa, Sysoev, AV and Prozorova, LA (2014) Types of freshwater gastropods described by Ya.I. Starobogatov, with additional data on the species: family Lymnaeidae. Zoologicheskie Issledovania 16, 737.Google Scholar
Smith, RDA and Ross, AJ (2018) Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin-producing forests to brackish waters, and the age of the amber. Earth and Environmental Science Transactions of The Royal Society of Edinburgh 107, 239–47, doi: 10.1017/S1755691017000287.CrossRefGoogle Scholar
Sokol, J (2019) Troubled treasure. Science 364, 722–9, doi: 10.1126/science.364.6442.722.CrossRefGoogle ScholarPubMed
Thomä, C (1845) Fossile Conchylien aus den Tertiärschichten bei Hochheim und Wiesbaden gesammelt und im naturhistorischen Museum zu Wiesbaden ausgestellt. Jahrbücher des Vereins für Naturkunde in Nassau 2, 125–2.Google Scholar
Trewick, SA (2001) Molecular evidence for dispersal rather than vicariance as the origin of flightless insect species on the Chatham Islands, New Zealand. Journal of Biogeography 27, 1189–200, doi: 10.j.1365-2699.2000.00492.x.CrossRefGoogle Scholar
Vagvolgyi, J (1975) Body size, aerial dispersal, and origin of the Pacific land snail fauna. Systematic Zoology 24, 465–88, doi: 10.2307/2412906.CrossRefGoogle Scholar
van Leeuwen, CHA, Huig, N, van der Velde, G, van Alen, TA, Wagemaker, CAM, Sherman, CDH, Klaassen, M and Figuerola, J (2013) How did this snail get here? Several dispersal vectors inferred for an aquatic invasive species. Freshwater Biology 58, 8899, doi: 10.1111/fwb.12041.CrossRefGoogle Scholar
van Leeuwen, CHA and van der Velde, G (2012) Prerequisites for flying snails: external transport potential of aquatic snails by waterbirds. Freshwater Science 31, 963–72, doi: 10.1899/12-023.1.CrossRefGoogle Scholar
van Leeuwen, CHA, van der Velde, G, van Lith, B and Klaassen, M (2012) Experimental quantification of long distance dispersal potential of aquatic snails in the gut of migratory birds. PLoS ONE 7, e32292, doi: 10.1371/journal.pone.0032292.CrossRefGoogle ScholarPubMed
Vinarski, MV (2013) One, two, or several? How many lymnaeid genera are there? Ruthenica 23, 4158.Google Scholar
Vinarski, MV (2015) Conceptual shifts in animal systematics as reflected in the taxonomic history of a common aquatic snail species (Lymnaea stagnalis). Zoosystematics and Evolution 91, 91103, doi: 10.3897/zse.91.4509.CrossRefGoogle Scholar
Vinarski, MV, Aksenova, OV and Bolotov, IN (2020a) Taxonomic assessment of genetically-delineated species of radicine snails (Mollusca, Gastropoda, Lymnaeidae). Zoosystematics and Evolution 96, 577608, doi: 10.3897/zse.96.52860.CrossRefGoogle Scholar
Vinarski, MV, Bolotov, IN, Aksenova, OV, Babushkin, ES, Bespalaya, YV, Makhrov, AA, Nekhaev, IO and Vikhrev, IV (2020b) Freshwater mollusca of the Circumpolar Arctic: a review on their taxonomy, diversity and biogeography. Hydrobiologia, published online 27 April 2020, doi: 10.1007/s10750-020-04270-6.CrossRefGoogle Scholar
Vinarski, MV, Bolotov, IN, Schniebs, K, Nekhaev, IO and Hundsdoerfer, AK (2017) Endemics or strangers? The integrative re-appraisal of taxonomy and phylogeny of the Greenland Lymnaeidae (Mollusca: Gastropoda). Comptes Rendus Biologies 340, 541–57, doi: 10.1016/j.crvi.2017.09.005.CrossRefGoogle Scholar
Vinarski, MV and Grebennikov, ME (2012) A review of the species of the genus Aenigmomphiscola Kruglov et Starobogatov, 1981 (Gastropoda: Pulmonata: Lymnaeidae). Ruthenica 22, 159–70.Google Scholar
Walther, AC, Benard, MF, Boris, LP, Enstice, N, Tindauer-Thompson, A and Wan, J (2008) Attachment of the freshwater limpet Laevapex fuscus to the hemelytra of the water bug Belostoma flumineum . Journal of Freshwater Ecology 23, 337–9, doi: 10.1080/02705060.2008.9664207.CrossRefGoogle Scholar
Wang, H, Matzke-Karasz, R, Horne, DJ, Zhao, X, Cao, M, Zhang, H and Wang, B (2020) Exceptional preservation of reproductive organs and giant sperm in Cretaceous ostracods. Proceedings of the Royal Society B: Biological Sciences 287, 20201661, doi: 10.1098/rspb.2020.1661.CrossRefGoogle ScholarPubMed
Westerweel, J, Roperch, P, Licht, A, Dupont-Nivet, G, Win, Z, Poblete, F, Ruffet, G, Swe, HH, Thi, MK and Aung, DW (2019) Burma Terrane part of the Trans-Tethyan arc during collision with India according to palaeomagnetic data. Nature Geoscience 12, 863–8, doi: 10.1038/s41561-019-0443-2.CrossRefGoogle ScholarPubMed
White, CA (1886) On the fresh-water invertebrates of the North American Jurassic. United States Geological Survey Bulletin 29, 691725.Google Scholar
Witton, MP and Habib, MB (2010) On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE 5, e13982, doi: 10.1371/journal.pone.0013982.CrossRefGoogle ScholarPubMed
Xing, L, McKellar, RC, O’Connor, JK, Bai, M, Tsend, K and Chiappe, LM (2019) A fully feathered enantiornithine foot and wing fragment preserved in mid-Cretaceous Burmese amber. Scientific Reports 9, 927, doi: 10.1038/s41598-018-37427-4.CrossRefGoogle ScholarPubMed
Xing, L, McKellar, RC, Xu, X, Li, G, Bai, M, Persons, WS IV, Miyashita, T, Benton, MJ, Zhang, J, Wolfe, AP, Yi, Q, Tseng, K, Ran, H and Currie, PJ (2016) A feathered dinosaur tail with primitive plumage trapped in mid-Cretaceous amber. Current Biology 26, P335260, doi: 10.1016/j.cub.2016.10.008.CrossRefGoogle ScholarPubMed
Xing, L, O’Connor, JK, McKellar, RC, Chiappe, LM, Tseng, K, Li, G and Bai, M (2017) A mid-Cretaceous enantiornithine (Aves) hatchling preserved in Burmese amber with unusual plumage. Gondwana Research 49, 264–77, doi: 10.1016/j.gr.2017.06.001.CrossRefGoogle Scholar
Xing, L, O’Connor, JK, Niu, K, Cockx, P, Mai, H and McKellar, RC (2020) A new Enantiornithine (Aves) preserved in mid-Cretaceous Burmese amber contributes to growing diversity of Cretaceous plumage patterns. Frontiers in Earth Sciences 8, 264, doi: 10.3389/feart.2020.00264.CrossRefGoogle Scholar
Xing, L, Sames, B, McKellar, RC, Xi, D, Bai, M and Wan, X (2018a) A gigantic marine ostracod (Crustacea: Myodocopa) trapped in mid-Cretaceous Burmese amber. Scientific Reports 8, 1365, doi: 10.1038/s41598-018-19877-y.CrossRefGoogle ScholarPubMed
Xing, L, Stanley, EL, Bai, M and Blackburn, DC (2018b) The earliest direct evidence of frogs in wet tropical forests from Cretaceous Burmese amber. Scientific Reports 8, 8770, doi: 10.1038/s41598-018-26848-w.CrossRefGoogle ScholarPubMed
Yen, T-C (1946) On lower Cretaceous fresh-water mollusks of Sage Creek, Wyoming. Notulae Naturae of The Academy of Natural Sciences of Philadelphia 166, 113.Google Scholar
Yen, T-C (1951) Fresh-water mollusks of Cretaceous age from Montana and Wyoming. Part 1: A fluviatile fauna from the Kootenai formation near Harlowton, Montana. United States Geological Survey Professional Paper 233-A, 19.Google Scholar
Yen, T-C (1952a) Freshwater molluscan fauna from an Upper Cretaceous porcellanite near Sage Junction, Wyoming. American Journal of Science 250, 344–59, doi: 10.2475/ajs.250.5.344.CrossRefGoogle Scholar
Yen, T-C (1952b) Molluscan fauna of the Morrison Formation. United States Geological Survey Professional Paper 233-B, 2151.Google Scholar
Yen, T-C (1954) Nonmarine mollusks of Late Cretaceous age from Wyoming, Utah and Colorado. Part 1: A fauna from western Wyoming. United States Geological Survey Professional Paper 254-B, 4559.Google Scholar
Yu, T, Kelly, R, Mu, L, Ross, A, Kennedy, J, Broly, P, Xia, F, Zhang, H, Wang, B and Dilcher, D (2019) An ammonite trapped in Burmese amber. Proceedings of the National Academy of Sciences of the United States of America 116, 11345–50, doi: 10.1073/pnas.1821292116.CrossRefGoogle ScholarPubMed
, W and Pan, H (1980) Mesozoic non-marine gastropods from Zhejiang and South Anhui. In Divisions and Correlation of the Mesozoic Volcano-Sedimentary Rocks in Zhejiang and Anhui Provinces, China (ed. Anonymous), pp. 135–72. Nanjing: Academia Sinica, Nanjing Institute of Geology and Paleontology.Google Scholar
Zenzal, TJ, Lain, EJ and Sellers, JM (2017) An indigo bunting (Passerina cyanea) transporting snails during spring migration. The Wilson Journal of Ornithology 129, 898902, doi: 10.1676/16-182.1.CrossRefGoogle Scholar