Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T07:39:48.878Z Has data issue: false hasContentIssue false

Eocene–Oligocene stratigraphy and structural history of the Karaburun area, southwestern Black Sea coast, Turkey: transition from extension to compression

Published online by Cambridge University Press:  03 June 2015

BORIS NATAL’IN*
Affiliation:
İstanbul Teknik Üniversitesi, Maden Fakültesi, Jeoloji Müh. Bölümü, 34469 Ayazağa İstanbul, Turkey
ADALET GIZEM SAY
Affiliation:
İstanbul Teknik Üniversitesi, Maden Fakültesi, Jeoloji Müh. Bölümü, 34469 Ayazağa İstanbul, Turkey
*
*Author for correspondence: [email protected]

Abstract

The stratigraphic succession exposed in the Karaburun area (southern Black Sea coast, NW Turkey) records multiple changes in depositional and tectonic settings during Cenozoic times. It starts with the Middle–Upper Eocene Soğucak Formation of reef limestone that across a normal fault, omitting the lower part of the Lower Oligocene Ceylan Formation (deep-marine shale unit), abuts the upper part of the Ceylan Formation that is made up of two facies: (1) shallow-marine sandstone and (2) shallow-marine limestone units containing horizons of submarine slumps. Both facies are unconformably overlain by the fluvial Upper Miocene Çukurçeşme Formation. The tectonic record includes: (1) latest Eocene – Early Oligocene NE–SW extension, (2) Early Oligocene NE–SW shortening and (3) Late Miocene NW–NE extension. The earliest normal faults cutting the Soğucak and the lower part of the Ceylan formations are associated with clastic dykes injected into the deep-marine shale. These structures suggest a disruption of the Eocene carbonate platform and are also known in the neighbouring Thrace Basin. The following NE–SW shortening created the NE-vergent Karaburun Thrust that is synchronous with the shallowing and inversion of the Ceylan Basin. Rotation of the stress field is recorded by changes in clastic dyke orientation and their deformation. Compression caused multiple westerly directed submarines slides from uplifts in easterly located regions. This event is not recorded in the Thrace Basin. Finally, the Miocene tectonic activity formed NW- and NE-striking normal faults. The outlined tectonic history includes Early Oligocene extensional and compressional episodes recorded in the southern margin of the Black Sea that had hitherto not been known.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akbayram, K., Okay, A. I. & Satır, M. 2013. Early Cretaceous closure of the Intra-Pontide Ocean in western Pontides (Northwestern Turkey). Journal of Geodynamics 65, 3855.Google Scholar
Alişan, C. & Gerhard, J. E. 1987. Kuzey Trakya Havzasında açılan üç kuyunun palinostratigrafisi ve kaynak Kaya özellikleri. In Türkiye 7. Petrol Kongresi [Proceedings of the Turkish 7th Petroleum Congress], pp. 461–66.Google Scholar
Anderson, E. M. 1951. Dynamics of Faulting and Dyke Formation. Edinburgh: Oliver and Boyd.Google Scholar
Arıç, C. 1955. Haliç-Küçükçekmece Gölü Bölgesinin Jeolojisi. Istanbul: ITU Maden Fakültesi Doktora Tezi, 48 pp.Google Scholar
Arslan, S., Akin, U. & Alaca, A. 2010. Investigation of crustal structure of Turkey by means of gravity data. Mineral Research and Exploration Bulletin 140, 5571.Google Scholar
Ates, A., Kayıran, T. & Sincer, I. 2003. Structural interpretation of the Marmara region, NW Turkey, from aeromagnetic, seismic and gravity data. Tectonophysics 367, 4199.CrossRefGoogle Scholar
Barreca, G. 2014. Geological and geophysical evidences for mud diapirism in south-eastern Sicily (Italy) and geodynamic implications. Journal of Geodynamics 82, 168–77.Google Scholar
Baykal, F. 1974. Historik Jeoloji. İstanbul: İstanbul Üniversitesi Fen Fakültesi Yayını, pp. 366–71.Google Scholar
Baykal, F. & Önalan, M. 1979. Şile sedimenter karışığı (Şile Olistostromu). In Altınlı Sempozyumu, pp. 1525. Ankara: Türkiye Jeoloji Kurumu.Google Scholar
Çağlayan, M. A. & Yurtsever, A. 1998. 1:100000 ölçekli Türkiye Jeoloji Haritaları. Ankara: Jeoloji Etütleri Dairesi [Geological Studies Department], pp. 20–3.Google Scholar
Cavazza, W., Federici, I., Okay, A. I. & Zattin, M. 2012. Apatite fission-track thermochronology of the Western Pontides (NW Turkey). Geological Magazine 149, 133–40.Google Scholar
Coşkun, B. 1997. Oil and gas fields – transfer zone relationships, Thrace basin, NW Turkey. Marine and Petroleum Geology 14, 401–16.CrossRefGoogle Scholar
Coşkun, B. 2000. Influence of the Istranca–Rhodope Massifs and strands of the North Anatolian Fault on oil potential of Thrace Basin, NW Turkey. Journal of Petroleum Science and Engineering 27, 125.Google Scholar
Doust, H. & Arıkan, Y. 1974. The geology of the Thrace Basin. In Türkiye 2. Petrol Kongresi [Proceedings of the Turkish 2nd Petroleum Congress], pp. 119–34.Google Scholar
Ercan, A., Yağmurlu, F. & Uz, B. 1988. Çatalca (İstanbul) yöresinde kömür içeren Tersiyer tortullarının çökelme özellikleri ve jeofizik incelemesi. Türkiye Jeoloji Bülteni 31, 112.Google Scholar
Erentöz, C. & Ternek, Z. 1959. Türkiye sedimantasyon havzalarında petrol imkânları. MTA Dergisi 53 (2), 2136.Google Scholar
Gedik, İ., Timur, E., Duru, M. & Pehlivan, Ş. 2005. Geology Map of Turkey. F22c; F23d; G23a (Scale 1:50 000). Ankara: General Directorate of the Mineral Research and Exploration (MTA).Google Scholar
Gökçen, N. 1971. Güneydoğu Trakya’nın Paleojen stratigrafisinde Ostracod’lar açısından yeni görüşler. In Türkiye 1. Petrol Kongresi [Proceedings of the Turkish 1st Petroleum Congress], pp. 81–5.Google Scholar
Görür, N., Akkök, R., Seymen, İ., Alkaya, F. & Oktay, F. Y. 1981. Trakya Havzası doğusunda Eosen resifleri. İstanbul Yerbilimleri 3–4 (2), 303–6.Google Scholar
Görür, N. & Okay, A. I. 1996. A fore-arc origin for the Trace Basin, NW Turkey. International Journal of Earth Sciences 85, 662–8.Google Scholar
İslamoğlu, Y., Harzhauser, M., Gross, M., Jiménez-Moreno, G., Coric, S., Kroh, A., Rögl, F. & van der Made, J. 2010. From Tethys to Eastern Paratethys: Oligocene depositional environments, paleoecology and paleobiogeography of the Thrace Basin (NW Turkey). International Journal of Earth Sciences 99, 183200.CrossRefGoogle Scholar
İslamoğlu, Y. & Taner, G. 1995. Pınarhisar (Kırklareli) ve çevresinin Tersiyer mollusk faunası ve stratigrafisi. MTA Dergisi 117, 149–69.Google Scholar
Jolly, R. J. H. & Lonergan, L. 2002. Mechanisms and controls on the formation of sand intrusions. Journal of Geological Society, London 159, 605–17.Google Scholar
Karcıoğlu, G., Tank, S., Gürer, A., Çiftçi, E., Kaya, T. & Tunçer, M. 2013. Upper crustal electrical resistivity structures in the vicinity of the Çatalca Fault, Istanbul, Turkey by magnetotelluric data. Studia Geophysica et Geodaetica 57 (2), 292308.Google Scholar
Keskin, C. 1974. Kuzey Ergene havzasının stratigrafisi. In Türkiye 2. Petrol Kongresi [Proceedings of the Turkish 2nd Petroleum Congress], pp. 154–63.Google Scholar
Kopf, A. J. 2002. Significance of mud volcanism. Reviews of Geophysics 40 (2), 1005.Google Scholar
Less, G., Özcan, R. & Okay, A. I. 2011. Stratigraphy and larger Foraminifera of the Middle Eocene to Lower Oligocene shallow-marine units in the northern and eastern parts of the Thrace Basin, NW Turkey. Turkish Journal of Earth Sciences 20, 793845.Google Scholar
Limonov, A. F., van Weering, T. C. E., Kenyon, N. H., Ivanov, M. K. & Meisner, L. B. 1997. Seabed morphology and gas venting in the Black Sea mudvolcano area: observations with the MAK-1 deep-tow sidescan sonar and bottom profiler. Marine Geology 137 (1–2), 121–36.Google Scholar
Nakoman, E. 1968. Ağaçlı linyitlerin mikroflorasının etüdü. Türkiye Jeoloji Bülteni 11, 6891.Google Scholar
Natal’in, B., Sunal, G., Satır, M. & Toraman, E. 2012. Tectonics of the Strandja Massif, NW Turkey: history of a long-lived arc at the northern margin of Palaeo-Tethys. Turkish Journal of Earth Sciences 21, 755–98.Google Scholar
Okay, A. I. 1989. Tectonic units and sutures in tile Pontides, Northern Turkey. In Tectonic Evolution of the Tethyan Region (ed. Şengör, A. M. C.), pp. 109–16. Dordrecht: Kluwer Academic Publishers.Google Scholar
Okay, A. I. 2000. Was the Late Triassic orogeny in Turkey caused by the collision of an oceanic plateau? In Tectonics and Magmatism in Turkey and the Surrounding Area (eds Bozkurt, E., Winchester, J. A., Piper, J. D. A.), pp. 25–41. Geological Society of London, Special Publication no. 173.Google Scholar
Okay, A. I., Bozkurt, E., Satır, M., Yiğitbaş, E., Crowley, Q. G. & Shang, C. K. 2008. Defining the southern margin of Avalonia in the Pontides: geochronological data from the Late Proterozoic and Ordovician granitoids from NW Turkey. Tectonophysics 461, 252–64.Google Scholar
Okay, A. I., Satır, M. & Siebel, W. 2006. Pre-Alpide Palaeozoic and Mesozoic orogenic events in the Eastern Mediterranean region. Geological Society of London, Memoirs 32, 389405.Google Scholar
Okay, A. I., Şengör, A. M. C. & Görür, N. 1994. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22, 267–70.Google Scholar
Okay, A. I., Tansel, İ. & Tüysüz, O. 2001. Obduction, subduction and collision as reflected in the Upper Cretaceous – Lower Eocene sedimentary record of western Turkey. Geological Magazine 138, 117–42.Google Scholar
Okay, A. I. & Tüysüz, O. 1999. Tethyan sutures of northern Turkey. In The Mediterranean Basins: Tertiary Extension within the Alpine Orogen (eds Durand, B., Jolivet, L., Horvath, F. & Seranne, M.), pp. 475–515. Geological Society of London, Special Publication no. 156.Google Scholar
Okay, A. I., Tüysüz, O., Satır, M., Özkan-Altiner, S., Altiner, D., Sherlock, S. & Eren, R. H. 2006. Cretaceous and Triassic subduction-accretion, high-pressure–low-temperature metamorphism, and continental growth in the Central Pontides, Turkey. Geological Society of America Bulletin 118, 1247–69.Google Scholar
Okay, A. I., Yurtsever, A. & Siyako, M. 2006. Trakya bölgesi litostratigrafi birimleri. Stratigrafi Komitesi Litostratigrafi birimleri serisi 2, 5366.Google Scholar
Oktay, F. Y., Eren, R. H. & Sakınç, M. 1992. Karaburun–Yeniköy (İstanbul) çevresinde doğu Trakya Oligosen havzasının sedimenter jeolojisi. In Türkiye 9. Petrol Kongresi [Proceedings of the Turkish 9th Petroleum Congress], pp. 92–101.Google Scholar
Özcan, E., Less, G. & Kertesz, B. 2007. Late Ypresian to Middle Lutetian orthophragminid record from Central and Northern Turkey: taxonomy and remarks on zonal scheme. Turkish Journal of Earth Sciences 16, 281318.Google Scholar
Özcan, Z., Okay, A. I., Özcan, E., Hakyemez, A. & Altiner, S. 2012. Late Cretaceous–Eocene geological evolution of the Pontides based on new stratigraphic and palaeontologic data between the Black Sea Coast and Bursa (NW Turkey). Turkish Journal of Earth Sciences 21, 933–60.Google Scholar
Ozturk, H. & Frakes, L. A. 1995. Sedimentation and diagenesis of an Oligocene manganese deposit in a shallow subbasin of the Paratethys: Thrace Basin, Turkey. Ore Geology Reviews 10, 117–32.Google Scholar
Perinçek, D. 1987. Trakya Havzası renç fay zonunun sismik özellikleri. In Türkiye 7. Petrol Kongresi [Proceedings of the Turkish 7th Petroleum Congress], pp. 11–21.Google Scholar
Perinçek, D. 1991. Possible strand of the North Anatolian Fault in the Thrace Basin, Turkey – an interpretation. American Association of Petroleum Geologists Bulletin 75 (2), 241–57.Google Scholar
Petit, J. P. 1987. Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology 9, 597608.Google Scholar
Pluijm, B. A. V. D. & Marshak, S. 2003. Earth Structure: An Introduction to Structural Geology and Tectonics. New York: W. W. Norton Company.Google Scholar
Popov, S. V., Akhmetyev, V. A., Lopatin, A. V., Bugrova, E. M., Sychevskaya, E. K., Shcerba, E. G., Andreeva-Grigorovich, A. S., Zaporozhetz, N. I., Nikolayeva, I. A. & Kopp, M. L. 2009. Paleogeography and Biogeography of the Paratethys Basins. Part 1. Late Eocene – Early Miocene. Moscow: Nauchnyi Mir.Google Scholar
Robertson, A. H. F. & Ustaömer, T. 2004. Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey. Tectonophysics 381, 175209.Google Scholar
Rögl, F. 1998. Paleogeographic considerations for Mediterranean and Paratethys Seaways (Oligocene–Miocene). Annalen Naturhistorischen Museums Wien 99, 279310.Google Scholar
Sakınç, M. 1994. Karaburun (B İstanbul) denizel Oligoseninin stratigrafisi ve paleontolojisi. MTA Dergisi 116, 914.Google Scholar
Sakınç, M., Yaltırak, C. & Oktay, F. Y. 1999. Palaeogeographical evolution of the Thrace Neogene Basin and the Tethys-Paratethys relations at northwestern Turkey (Thrace). Palaeogeography, Palaeoclimatology, Palaeoecology 153, 1740.Google Scholar
Sayar, C. 1989. İstanbul ve çevresi Neojen çökelleri ve Paratetis içindeki konumu. In İTU 35. Yıl Sempozyumu, pp. 250–66.Google Scholar
Şengör, A. M. C. & Yılmaz, Y. 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics 75, 181–90.Google Scholar
Sipahioğlu, N. Ö. & Menlikli, C. 2009. Seismic Stratigraphic Analysis of Oligocene–Recent Turbidite Systems, Bosphorus 3D Seismic Survey Area, Western Black Sea. Ankara: MTA Genel Müdürlüğü.Google Scholar
Sîrel, E. & Gündüz, H. 1976. Kırklareli yöresi (kuzey Trakya) denizel Oligosen’inin stratigrafisi ve Nummulites türleri. Türkiye Jeoloji Kurumu Bülteni 19, 155–8.Google Scholar
Siyako, M. & Huvaz, O. 2007. Eocene stratigraphic evolution of the Thrace Basin, Turkey. Sedimentary Geology 198, 7591.Google Scholar
Sonel, N. & Büyükutku, A. G. 1998. Trakya havzası kuzeyi Orta Eosen yaşlı kumtaşlarının hazne kaya özellikleri. MTA Dergisi 120, 259–68.Google Scholar
Sönmez-Gökçen, N. 1964. Çatalca (Trakya) civarı Neojeninden Congeria’lı serinin Ostracod’larla bulunan yeni yaşı hakkında not. MTA Dergisi 63, 4353.Google Scholar
Steininger, F. F. & Wessely, G. 2000. From the Tethyan Ocean to the Paratethys Sea: Oligocene to Neogene stratigraphy, paleogeography and paleobiogeography of the circum-Mediterranean region and the Oligocene to Neogene basin evolution in Austria. Mitteilungen der Österreichischen Geologischen Gesellschaft 92, 95116.Google Scholar
Turgut, S. & Eseller, G. 2000. Sequence stratigraphy, tectonics and depositional history in eastern Thrace Basin, NW Turkey. Marine and Petroleum Geology 17, 61100.CrossRefGoogle Scholar
Turgut, S., Türkarslan, M. & Perinçek, D. 1991. Evolution of the Thrace sedimentary basin and its hydrocarbon prospectivity. Special Publication of the European Association of Petroleum Geoscientists 1, 415–37.Google Scholar
Tüysüz, O. 1999. Geology of the Cretaceous sedimentary basins of the Western Pontides. Geological Journal 34, 7593.Google Scholar
Ulmishek, G. F. 2001. Petroleum geology and resources of the Middle Caspian Basin, former Soviet Union. US Geological Survey Bulletin 2201–A, 138.Google Scholar
Varol, B., Baykal, M. & Ayyıldız, T. 2009. Sedimentological–stratigraphical evaluation of Tertiary carbonates (Soğucak Formation) of Thrace Basin (Bozcaada – Kıyıköy). Mineral Research and Exploration Bulletin 139, 115.Google Scholar
Yaltırak, C. 2002. Tectonic evolution of the Marmara Sea and its surroundings. Marine Geology 190, 493529.Google Scholar
Yılmaz, Y. & Polat, A. 1998. Geology and evolution of the Thrace volcanism, Turkey. Acta Vulcanologica 10, 293303.Google Scholar
Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, S. C. & Şengör, A. M. C. 1997. Geology and tectonic evolution of the Pontides. In Regional and Petroleum Geology of the Black Sea and Surrounding Region (ed. Robinson, A. G.), pp. 183–226. American Association of Petroleum Geologists Memoir 68.Google Scholar
Yurtsever, A. & Çağlayan, M. A. 2002. 1:100000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları, no. 65, İstanbul F21 ve G21(kısmen) Paftaları. MTA Jeoloji Etütleri Dairesi.Google Scholar