Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-08T07:54:01.478Z Has data issue: false hasContentIssue false

Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark

Published online by Cambridge University Press:  01 May 2009

J. Farmer
Affiliation:
Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90024, U.S.A.
G. Vidal
Affiliation:
Institute of Palaeontology, University of Uppsala, Box 558, S-751 22, Uppsala, Sweden
M. Moczydłowska
Affiliation:
Institute of Palaeontology, University of Uppsala, Box 558, S-751 22, Uppsala, Sweden
H. Strauss
Affiliation:
Institut für Geologie, Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum 1, Germany
P. Ahlberg
Affiliation:
Department of Historical Geology and Palaeontology, Lund University, Sölvegatan 13, S-223 62, Lund, Sweden
A. Siedlecka
Affiliation:
Norges Geologiske Undersøkelse, P.O. Box 3006, N-7001 Trondheim, Norway

Abstract

An Ediacaran assemblage dominated by an unidentified species of CyclomedusaSprigg 1947, along with species of Ediacaria?Sprigg 1947, BeltanellaSprigg 1947, HiemaloraFedonkin 1982, and Nimbia?Fedonkin 1980, is described for the first time from the Innerelv Member of the Stappogiedde Formation exposed in coastal outcrops west of Tanafjorden on Digermul Peninsula, in northeastern Finnmark, northern Norway. The fossil assemblage is dominated by discoidal forms which share certain affinities with the cosmopolitan genera. Cyclomedusaand Ediacaria. However, our specimens differ from these and other discoidal Ediacaran fossils in the absence of radial sculpture. This, along with a basically concentric organization, are characteristics shared with Kullingiafrom the Dividal Group of northern Scandinavia, the White Sea, Podolia, and northwestern Canada, along with undescribed discoidal remains from the Charnian Supergroup, Charnwood Forest, Leicestershire, England, and the Conception Group, Avalon Peninsula, Newfoundland.

Our discovery of an Ediacaran-type assemblage within the Middle Innerelv Member provides support for previous suggestions of a late Vendian age for this sequence. This general conclusion is consistent with the occurrence of early Cambrian taxa, including the trace fossil Phycodes, and the problematical forms Vendotaenia and Sabellidites, in basal portions of the Lower Breivik Formation, within the same stratigraphie section. The lowest formally-proposed faunal zone in northern Scandinavia is the Kullingia Zone, based on the occurrence of the fossil medusoid Kullingia concentrica in Member III (Middle Sandstone C) of the Dividal Group, northern Scandinavia. Kullingiais a distinctly chambered form that was probably pelagic. In contrast, Cyclomedusa,and related genera of the so-called Cyclomedusaplexus, comprise an informal grouping of intergrading, probably benthic, taxa that possess radial and/or concentric organization. In light of the intergradational nature of taxa, present difficulties in taxonomic interpretation and correlation, and the abundance of cyclomedusoids in many Ediacaran assemblages, we suggest that the concept of the Kullingia Zone, as originally defined for northern Scandanavia, be broadened to include the common form genera of the Cyclomedusa plexus, inclusive of the occurrences in the Innerelv Member described herein. It is our hope that additional fieldwork will provide a basis for more refined taxonomic evaluations and biozonation.

Type
Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. 1989. Konservat-Lagerstätten: cause and classification. Paleobiology 14, 331–44.Google Scholar
Anderson, M. M. 1978. Ediacaran fauna. In Yearbook of Science and Technology (ed. Lapedes, D. N.), pp. 146–9. New York: McGraw-Hill Book Co.Google Scholar
Anderson, M. M. & Conway Morris, S. 1982. A review, with descriptions of four unusual forms, of the soft-bodied fauna of the Point Conception and St. John's Groups (late Precambrian). Avalon Peninsula, Newfoundland. Third North American Paleontological Convention, Proceedings 1, 18.Google Scholar
Anderson, M. M. & Misra, S. B. 1968. Fossils found in the Precambrian Conception Group of southeastern Newfoundland. Nature 220, 680–1.CrossRefGoogle Scholar
Banks, N. L. 1970. Trace fossils from the late Precambrian and lower Cambrian of Finnmark, Norway. In Trace Fossils (eds. Crimes, T. P. and Harper, J. C.), pp. 1934. Geological Journal Special Issue No. 3.Google Scholar
Banks, N. L. 1973 a. Trace fossils in the Halkkavarre section of the Dividal Group (?late Precambrian-Lower Cambrian), Finnmark. Norges geologiske undersokelse 288, 16.Google Scholar
Banks, N. L. 1973 b. Innerelv Member: Late Precambrian marine shelf deposit, east Finnmark. Norges geologiske undersokelse 288, 725.Google Scholar
Benus, A. P. 1989. Sedimentological context of a deep-water Ediacaran fauna (Mistaken Point Formation, Avalon Zone, eastern Newfoundland) In Trace Fossils, Small Shelly Fossils, and the Precambrian-Cambrian Boundary (eds Landing, E., Narbonne, G. M. and Myrow, P.), pp. 89. New York State Geological Survey, Bulletin no. 463.Google Scholar
Bergström, J. 1989. The origin of the animal phyla and the new phylum Procoelomata. Lethaia 22, 259–69.CrossRefGoogle Scholar
Bertrand-Sarfati, J. & Siedlecka, A. 1980. Columnar stromatolites of the terminal Precambrian Porsanger Dolomite and Grasdal Formation of Finnmark, north Norway. Norsk Geologisk Tidsskrift 60, 127.Google Scholar
Cloud, P. E. Jr. 1973. Pseudofossils: a plea for caution. Geology 1, 123–7.2.0.CO;2>CrossRefGoogle Scholar
Cloud, P. E. & Glaessner, M. F. 1982. The Ediacarian Period and System: Metazoa inherit the Earth. Science 218, 783–92.CrossRefGoogle Scholar
Coats, R. P. & Preiss, W. V. 1980. Stratigraphic and geochronological reinterpretation of late Proterozoic glaciogene sequences in the Kimberly region, western Australia. Precambrian Research 13, 181208.Google Scholar
Conway Morris, S. 1985 a. The Ediacaran biota and early metazoan evolution. Geological Magazine 122, 7781.CrossRefGoogle Scholar
Conway Morris, S. 1985 b. Non-skeletonized lower invertebrate fossils: a review. In The Origins and Relationships of the Lower Invertebrates (eds. Conway Morris, S. and others), pp. 343–59. Systematic Association Special Volume 28. Oxford: Clarendon Press.Google Scholar
Conway Morris, S. 1987. The search for the Precambrian-Cambrian boundary. American Scientist 75, 157167.Google Scholar
Cowie, J. W. 1989. Introduction. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 36. Oxford Monographs on Geology and Geophysics, no. 12. Oxford: Clarendon Press.Google Scholar
Crimes, T. P. 1989. Trace fossils. In The Precambrian-Cambrian Boundary (eds Cowie, J. W. and Brasier, M. D.), pp. 166–85. Oxford Monographs on Geology and Geophysics, no. 12. Oxford: Clarendon Press.Google Scholar
Edwards, M. B. 1975. Glacial retreat sedimentation in the Smalfjord Formation, Late Precambrian, north Norway. Sedimentology 22, 7594.Google Scholar
Edwards, M. B. 1984. Sedimentology of the Upper Proterozoic glacial record, Vestertana Group, Finnmark, north Norway. Norsk geologisk undersokelse 394, 176.Google Scholar
Fedonkin, M. A. 1980. New examples of Precambrian coelenterates from the northern Russian Platform. Paleontologicheskiy Zhurnal 2, 715 (in Russian).Google Scholar
Fedonkin, M. A. 1981. [White Sea biota of Vendian]. Trudy Geologiduskiy Institut, Akademiya nauk SSSR 342, 1100 (in Russian).Google Scholar
Fedonkin, M. A. 1982. [A new generic name for a Precambrian coelenterate]. Paleontologicheskiy Zhurnal 2, 137 (in Russian).Google Scholar
Fedonkin, M. A. 1985 a. [Soft-bodied Vendian fauna: Promorphological analysis]. In The Vendian System: Historic-geological and Palaeontological Basis Vol. 1 (eds Sokolov, B. S. and Ivanovskiy, A. B.), pp. 112–16. Moscow: Nauka (in Russian).Google Scholar
Fedonkin, M. A. 1985 b. Systematic descriptions of Vendian metazoa. In The Vendian System: Historic-geological and Palaeontological Basis Vol. 1 (eds Sokolov, B. S. and Ivanovskiy, A. B.), pp. 70107. Moscow: Nauka. (in Russian).Google Scholar
Fedonkin, M. A. 1985 c. Precambrian metazoans: the problems of preservation, systematics, and evolution. Philosophical Transactions of the Royal Society of London, B, 311, 2745.Google Scholar
Fedonkin, M. A. 1987. [Non-skeletal fauna of the Vendian and its place in the evolution of metazoans]. Transactions of the Paleontological Institute, USSR Academy of Science, 266 pp. Moscow: Nauka (in Russian).Google Scholar
Ford, T. D. 1958. Precambrian fossils from the Charnwood Forest. Proceedings of the Yorkshire Geological Society 31, 211–17.Google Scholar
Ford, T. D. 1963. The Precambrian fossils of the Charnwood Forest. Transactions of the Leicester Library and Philosophical Society 57, 5762.Google Scholar
Ford, T. D. 1968. Precambrian rocks, B. The Precambrian paleontology of Charnwood Forest. In The Geology of the East Midlands (eds Sylvester-Bradley, P. C. and Ford, T. D.), pp. 1214. Leicester University Press.Google Scholar
Ford, T. D. 1980. The Ediacarian fossils of Charnwood Forest, Leicestershire. Proceedings of the Geologists’ Association 91, 81–3.CrossRefGoogle Scholar
Føyn, S. 1967. Dividal-gruppen (‘Hyolithus-sonen’) i Finnmark og dens forhold til de eokambrisk-kambriske formasjoner. Norges geologiske undersokelse 249, 184.Google Scholar
Føyn, S. 1985. The Late Precambrian in northern Scandinavia. In The Caledonide Orogen-Scandinavia and Related Areas (Eds Gee, D. G. & Sturt, B. A.), pp. 233–45. Chichester: John Wiley and Sons.Google Scholar
Føyn, S. & Glaessner, M. F. 1979. Platysolenites, other animal fossils, and the Precambrian-Cambrian transition in Norway. Norsk Geologisk Tidsskrift 59, 2546.Google Scholar
Gall, J. -C. 1990. Les voiles microbiens. Leur contribution á la fossilisation des organismes au corps mou. Lethaia 23, 21–8.Google Scholar
Gehling, J. G. 1983. The Ediacara Member: a shallowing upward submarine fan sequence, within the Pound Subgroup. Geological Society of Australia, Abstracts 10, 52–4.Google Scholar
Gehling, J. G. 1986. Algal binding of siliciclastic sediments: a mechanism in the preservation of Ediacara fossils. 12th International Sedimentological Congress Abstracts, 117.Google Scholar
Germs, G. J. B. 1972. The stratigraphy and palaeontology of the lower Nama Group, southwest Africa. University of Cape Town, Department of Geology, Chamber of Mines Precambrian Research Unit Bulletin 12, 1250.Google Scholar
Germs, J. B., Knoll, A. H. & Vidal, G. 1986. Latest Proterozoic microfossils from the Nama Group, Namibia (South West Africa). Precambrian Research 32, 4562.CrossRefGoogle Scholar
Gibson, G. G., Tetter, S. A. & Fedonkin, M. A. 1984. Ediacarian fossils from the Carolina Slate Belt, Stanly Country, North Carolina. Geology 12, 387–90.Google Scholar
Glaessner, M. F. 1979. Precambrian. In Treatise on Invertebrate Paleontology, Part A. Introduction. Fossilization (Taphonomy), Biogeography and Biostratigraphy (eds Berggren, et al.). Boulder, Colorado and Lawrence, Kansas: Geological Society of America and University of Kansas Press.Google Scholar
Glaessner, M. F. 1984. The Dawn of Animal Life: A Biohistorical Study. Cambridge: Cambridge University Press. 244 pp.Google Scholar
Glaessner, M. F. & Wade, M. 1966. The late Precambrian fossils from Ediacaria, south Australia. Palaeontology 9, 599628.Google Scholar
Goldring, R. & Curnow, C. N. 1967. The stratigraphy and facies of the late Precambrian at Ediacara, south Australia. Journal of the Geological Society of Australia 14, 195214.Google Scholar
Grabau, A. W. 1922. The Sinian system. Bulletin, Geological Society of China 1, 4448.Google Scholar
Gürich, G. 1930. Die bislang altesten Spuren von Organismen in Sudafrica. Proceedings, 25th International Geological Congress,Pretoria, South Africa, Section 7, 670–80.Google Scholar
Hamar, G. 1967. Platysolenites antiquissimus Eichwald (Vermes) from the Lower Cambrian of northern Norway. Norges geologiske undersokelse 249, 8995.Google Scholar
Harland, W. B., Cox, A. V., Llewellyn, P. G., Pickton, C. A. G., Smith, A. G. & Walters, R. 1982. A Geologic Time Scale. Cambridge: Cambridge University Press.Google Scholar
Hofmann, H. J. 1988. Paleocene #7. Precambrian biostratigraphy. Geoscience Canada 14, 135–54.Google Scholar
Hofmann, H. J. & Bengtson, S. (in press). Stratigraphie distribution of megafossils. In The Proterozoic Biosphere. A Multidisciplinary Study, Volume 1 (eds Schopf, J. W. and Klein, C.). New York: Cambridge University Press.Google Scholar
Hofmann, H. J., Bengtson, S., Hayes, J. M., Lipps, J. H., Schopf, J. W., Strauss, H., Summons, R. E. & Walter, M. W. (in press). Biostratigraphy and paleo-biogeography of the Proterozoic. In The Proterozoic Biosphere. A Multidisciplinary Study, Volume 1 (eds Schopf, J. W. and Klein, C.). New York: Cambridge University Press.Google Scholar
Hofmann, H. J. & Narbonne, G. M. 1990. Early Vendian megafossils from intertillite beds in the Windermere Supergroup, northwestern Canada. In Third International Symposium on the Cambrian System, Abstracts (eds Repina, L. N. and Zhuravlev, A. J.), p. 112. Novosibirsk, USSR.Google Scholar
Hofmann, H. J., Narbonne, G. M. & Aitken, J. D. 1990. Ediacaran remains from intertillite beds in northwestern Canada Geology 18, 1119–202.Google Scholar
Jenkins, R. J. F. 1981. The concept of an ‘Ediacaran Period’ and its stratigraphic significance in Australia. Transactions of the Royal Society of South Australia 105, 179–94.Google Scholar
Jenkins, R. J. F. 1984. Interpreting the oldest fossil cnidarians. Palaeontographica Americana 54, 95104.Google Scholar
Jenkins, R. J. F. 1988. Ediacaran succession and fossil occurrences. In Proterozoic Ediacara Fauna and Cambrian Archaeocyatha of the Flinders Ranges, South Australia (eds Jenkins, R. J. F. and Gravestock, D. I.), pp. 17. Fifth International Symposium on Fossil Cnidaria, Handbook for Excursion A2, 49 pp.Google Scholar
Jenkins, R. J. F. 1989. The ‘supposed terminal Precambrian extinction event’ in relation to the Cnidaria. Memoirs of the South Australia Museum 17, 347–59.Google Scholar
Jenkins, R. J. F., Ford, C. H. & Gehling, J. G. 1983. The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Ranges). Journal of the Geological Society of Australia 30, 101–19.Google Scholar
Landing, E., Narbonne, G. M., Myrow, P., Benus, A. P. & Anderson, M. M. 1989. Faunas and depositional environments of the Upper Precambrian through Lower Cambrian, southeastern Newfoundland. In Trace Fossils, Small Shelly Fossils, and the Precambrian-Cambrian Boundary (eds Landing, E., Narbonne, G. M. and Myrow, P.), pp. 1858. New York State Geological Survey Bulletin no. 463.Google Scholar
Lowe, D. R. 1975. Water escape structures in coarsegrained sediments. Sedimentology 22, 157204.Google Scholar
Lowe, D. R. & Lopiccolo, R. D. 1974. The characteristics and origins of dish and pillar structures. Journal of Sedimentary Petrology 44, 484501.Google Scholar
Moczydlowska, M. 1991. Acritarch Biostratigraphy of the Lower Cambrian and the Precambrian-Cambrian Boundary in Southeastern Poland. Fossils and Strata no 29, 127 pp. Oslo: Universitetsforlaget.Google Scholar
Moczydlowska, M. & Vidal, G. 1986. Lower Cambrian acritarch zonation in southern Scandinavia and southern Poland. Geologiska Foreningens i Stockholm Forhandlinger 108, 201–23.CrossRefGoogle Scholar
Mount, J. F. 1989. Re-evaluation of the unconformities separating the ‘Ediacaran’ and Cambrian Systems, south Australia. Palaios 4, 366–73.CrossRefGoogle Scholar
Narbonne, G. M. & Aitken, J. D. 1990. Ediacaran fossils from the Sewki Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33, 945–80.Google Scholar
Narbonne, G. M. & Hofmann, H. J. 1987. Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30, 647–76.Google Scholar
Narbonne, G. M., Myrow, P. M., Landing, E. & Anderson, M. 1987. A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Canadian Journal of Earth Sciences 24, 1277–93.Google Scholar
Norris, R. D. 1989. Cnidarian taphonomy and affinities of the Ediacara biota. Lethaia 11, 381–95.Google Scholar
Pflug, H. D. 1970 a. Zur Fauna der Nama-Schichten in südwest-Africa. I. Pteridinia, Bau und systematische Zugehörigkeit. Palaeontographica A134, 226–62.Google Scholar
Pflug, H. D. 1970 b. Zur Fauna der Nama-Schichten in südwest-Africa. II. Rangeidae, Bau und systematische Zugehörigkeit. Palaeontographica A135, 198231.Google Scholar
Pflug, H. D. 1972. Zur Fauna der Nama-Schichten in südwest-Africa. III. Erniettomorpha, Bau und Systematik. Palaeontographica A139, 134–70.Google Scholar
Pflug, H. D. 1973. Zur Fauna der Nama-Schichten in südwest-Africa. IV. Mikroskopische Anatomie der Petalo-organismen. Palaeontographica A144, 166202.Google Scholar
Plummer, P. S. 1980. Circular structures in a late Precambrian sandstone: fossil medusoids or evidence of fluidization? Transactions of the Royal Society of South Australia 104, 1316.Google Scholar
Pringle, I. R. 1973. Rb-Sr age determinations on shales associated with Varanger ice age. Geological Magazine 99, 465–72.Google Scholar
Reading, H. G. 1965. Eocambrian and Lower Palaeozoic geology of the Digermul Peninsula, Tanafjord, Finnmark. Norges geologiske undersokelse 234, 167–91.Google Scholar
Reading, H. G. & Walker, R. G. 1966. Sedimentation of Eocambrian tillites and associated sediments in Finnmark, northern Norway. Palaeogeography, Palaeoclimatology, Palaeoecology 2, 177212.Google Scholar
Runnegar, B. 1982. Oxygen requirements, biology, and phylogenetic significance of the late Precambrian worm Dickinsonia,and the evolution of the burrowing habit. Alcheringa 6, 223–39.Google Scholar
Runnegar, B. N. & Fedonkin, M. A. (in press). Proterozoic metazoan body fossils. In The Proterozoic Bisophere. A Multidisciplinary Study, Volume 1 (eds Schopf, J. W. and Klein, C.). New York: Cambridge University Press.Google Scholar
Seilacher, A. 1984. Late Precambrian and early Cambrian metazoa: preservational or real extinctions. In Patterns of Change in Earth Evolution (eds Holland, H. D. and Trendall, A. F.), pp. 158–68. Berlin: Springer-Verlag. 431 pp.Google Scholar
Seilacher, A. 1989. Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22, 229–39.Google Scholar
Sheng Xing, Yu. 1984. The Sinian and its position in the geological time scale. Proceedings, International Geological Congress 27, 212.Google Scholar
Siedlecka, A. 1985. Development of the Upper Proterozoic sedimentary basins of the Varanger Peninsula, east Finnmark, north Norway. Geological Survey of Finland, Bulletin 331, 175–85.Google Scholar
Siedlecka, A. & Siedlecki, S. 1967. Some new aspects of the geology of the Varanger Peninsula (northern Norway). Norges geologiske undersøkelse 247, 288306.Google Scholar
Siedlecka, A. & Siedlecki, S. 1971. Late Precambrian sedimentary rocks of the Tanafjord-Varangerfjord region of Varanger Peninsula, northern Norway. Norges geologiske undersokelse 269, 246–94.Google Scholar
Sokolov, B. S. 1972. The Vendian Stage in earth history. Proceedings, International Geological Congress,24th Session, Section 1, 78–84.Google Scholar
Sokolov, B. S. 1973. Vendian of northern Eurasia. American Association of Petroleum Geologists, Memoir 19, 204–18.Google Scholar
Sokolov, B. S. & Fedonkin, M. A. 1984. The Vendian as the terminal system of the Precambrian. Episodes 7, 1219.Google Scholar
Sokolov, B. S. & Ivanovskiy, A. B. (eds) 1985. The Vendian System: Historic-geological and Palaeontological Basis Vol. 1, 221 pp.; Vol. 2, 237 pp. Moscow: Nauka.Google Scholar
Sprigg, R. C. 1947. Early Cambrian(?) jellyfishes from the Flinders Ranges, south Australia. Transactions, Royal Society of South Australia 71, 212–24.Google Scholar
Sprigg, R. C. 1949. Early Cambrian ‘jellyfishes’ of Ediacara, south Australia and Mount John, Kimberly District, western Australia. Transactions of the Royal Society of South Australia 73, 7299.Google Scholar
Strauss, H., Bengston, S., Myrow, P. & Vidal, G. 1990. Late Proterozoic to early Cambrian sediments from Newfoundland-stable isotope geochemistry. Third International Symposium on the Cambrian System,Novosibirsk(August, 1990) Abstracts, 159.Google Scholar
Sturt, B. A., Pringle, I. R. & Roberts, D. 1975. Caledonian nappe sequence of Finnmark, northern Norway, and timing of orogenic deformation and metamorphism. Geological Society of America Bulletin 86, 710–18.Google Scholar
Sun, Weiguo. 1986 a. Precambrian medusoids: the Cyclomedusaplexus and Cyclomedusa-like pseudofossils. Precambrian Research 31, 325–60.Google Scholar
Sun, Weiguo., 1986 b. Late Precambrian scyphozoan medusa Mawsonites randellensissp. nov. and its significance in the Ediacara metazoan assemblage, south Australia. Alcheringa 10, 169–81.Google Scholar
Valentine, J. W. 1989. Bilaterans of the Precambrian-Cambrian transition and the annelid-arthropod relationship. Proceedings of the National Academy of Sciences, U.S.A. 86, 2272–5.Google Scholar
Vidal, G. 1979. Acritarchs and the correlation of the Upper Proterozoic. Publications, Institute of Mineralogy, Palaeontology, and Quaternary Geology, University of Lund 219, 121.Google Scholar
Vidal, G. 1981. Micropaleontology and biostratigraphy of the Upper Proterozoic and Lower Cambrian sequence in east Finnmark, northern Norway. Norges geologiske undersøkelse 362, 153.Google Scholar
Vidal, G. & Siedlecka, A. 1983. Planktonic, acid-resistant microfossils from the Upper Proterozoic strata of the Barents Sea region of Varanger Peninsula, east Finnmark, northern Norway. Norges geologiske undersøkelse 382, 4579.Google Scholar
Vodyanuk, S. A. 1989. Soft-bodied metazoan from Khatyspyt Formation, Olenek Uplift. In Pozdnij Dokembriy i Rannij Paleozoj Sibiri. Aktaula'nye Voprosy Stratigrafii Akademiia Nauk SSSR. Sibiriskoe Otdelenie. Institut Geologa Geofiiki, Novosibirsk.Google Scholar
Wade, M. 1968. Preservation of soft-bodied animals in Precambrian sandstone at Ediacaria, south Australia. Lethaia 1, 238–67.Google Scholar
Wade, M. 1972. Hydrozoa and Scyphozoa and other medusoids from the Precambrian Ediacara fauna, south Australia. Palaeontology 15, 197225.Google Scholar
Walter, M. F. 1989. The timing of major evolutionary innovations from the origin of life to the origins of the Metaphyta and Metazoa: the geological evidence. In Rates of Evolution (eds Campbell, K. S. W. and Day, M. F.), pp. 1538. London: Allen&Unwin.Google Scholar
Webby, B. D. 1970. Problematical disk-like structure from the late Precambrian of western New South Wales. Proceedings of the Linnean Society of New South Wales 95, 191–3.Google Scholar