Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-13T03:09:10.693Z Has data issue: false hasContentIssue false

Diet and habitat of mesomammals and megamammals from Cedral, San Luis Potosí, México

Published online by Cambridge University Press:  10 November 2016

VÍCTOR ADRIÁN PÉREZ-CRESPO*
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, CDMX
JOAQUÍN ARROYO-CABRALES
Affiliation:
Laboratorio de Arqueozoología ‘M. en C. Ticul Álvarez Solórzano’, Subdirección de Laboratorios y Apoyo Académico, INAH, Moneda 16, Col. Centro, 06060, México, CDMX
PEDRO MORALES-PUENTE
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, CDMX
EDITH CIENFUEGOS-ALVARADO
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, CDMX
FRANCISCO J. OTERO
Affiliation:
Instituto de Geología, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica S/N, Ciudad Universitaria, Del. Coyoacán, 04150, México, CDMX
*
Author for correspondence: [email protected]

Abstract

Using carbon and oxygen isotopic relationships from dental enamel, diet and habitat were inferred for both mesomammals and megamammals that lived in Cedral (San Luis Potosi, north-central México) during Late Pleistocene time. δ13C and δ18O values show that bison, some horses and mammoth were eating C4 plants and lived in open areas, while tapir, camel and some llamas ate C3 plants and inhabited closed areas. All other studied herbivores (pronghorn, glyptodont, mylodont ground sloth, javelina, mastodon, and other llamas, horses and mammoth) had a C3/C4 mixed diet, living in areas with some percentage of tree coverage. On the other hand, American lion and dire wolf ate either C4 or mixed-diet herbivores, and short-faced bear ate C3 herbivores. At Cedral, more humid conditions existed than presently, allowing the presence of a forested area near the grassland.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alberdi, M. T., Arroyo-Cabrales, J., Marín-Leyva, A. H. & Polaco, O. J. 2014. Study of Cedral horses and their place in the Mexican Quaternary. Revista Mexicana de Ciencias Geológicas 31, 21237.Google Scholar
Alberdi, M. T., Arroyo-Cabrales, J. & Polaco, O. J. 2003. ¿Cuántas especies de caballo hubo en una sola localidad del Pleistoceno Mexicano? Revista Española de Paleontología 18, 205–12.Google Scholar
Álvarez, T., Ocaña, M. A. & Arroyo-Cabrales, J. 2012. Restos de mamífero. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocenico con Restos de Actividad Humana (coord. Mirambell, L. E.), pp. 147–94. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Andrade, J. L., De La Barrera, E., Reyes-García, C., Ricalde, M. F., Vargas-Soto, G. & Cervera, C. J. 2007. El metabolismo ácido de las crasuláceas: diversidad, fisiología ambiental y productividad. Boletín de la Sociedad Botánica Mexicana 87, 3750.Google Scholar
Andrews, P. & Hixson, S. 2014. Taxon-free methods of palaeoecology. Annales Zoologici Fennici 51, 269–84Google Scholar
Anyonge, W. & Baker, A. 2005. Cranial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. Journal of Zoology 269, 309–16.Google Scholar
Bargo, M. S. & Vizcaíno, S. F. 2008. Paleobiology of Pleistocene ground sloths (Xenarthra, Tardigrada): biomechanics, morphogeometry and ecomorphology applied to the masticatory apparatus. Ameghiniana 95, 175–96.Google Scholar
Barrón-Ortíz, C. R., Pérez-Crespo, V. A., Arroyo-Cabrales, J., Theodor, J., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2014. The diet and habitat preferences of Capromeryx mexicana (Mammalia: Antilocapridae) from the Late Pleistocene Cedral, locality, San Luis Potosí, México. Geological Society of America Annual Meeting, Abstract.Google Scholar
Barrón-Ortíz, C. R., Theodor, J. & Arroyo-Cabrales, J. 2014. Dietary resource partitioning in the late Pleistocene horses from Cedral, north-central Mexico: evidence from the study of dental wear. Revista Mexicana de Ciencias Geológicas 31, 260–9.Google Scholar
Binder, W. J. & Van Valkenburgh, B. 2010. A comparison of tooth wear and breakage in Rancho La Brea sabertooths cats and dire wolves across time. Journal of Vertebrate Paleontology 30, 255–61.Google Scholar
Bocherens, H. 2003. Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. Deinsea 9, 5776.Google Scholar
Bocherens, H., Koch, P. L., Mariotti, A., Geraads, D. & Jeager, J. J. 1996. Isotopic biogeochemistry (δ13C, δ18O) of mammalian enamel from African Pleistocene hominid sites. Palaios 11, 306–18.Google Scholar
Bonde, A. M. 2013. Paleoecology of Late Pleistocene megaherbivores: stable isotope reconstructions of environment, climate, and response. Ph.D. thesis, Nevada University, Nevada, USA. Published thesis.Google Scholar
Bryant, J. D. & Froelich, P. N. 1995. A model of oxygen isotope fractionation in body water of large mammals. Geochimica et Cosmochimica Acta 59, 4523–37.Google Scholar
Castillo, R., Morales, P. & Ramos, S. 1985. El oxígeno-18 en las aguas meteóricas de México. Revista Mexicana de Física 31, 637–47.Google Scholar
Cerling, T. E. 1999. Paleorecords of C4 plants and ecosystems. In C4 Plant Biology (eds Sage, R. F. & Monson, R. K.), pp. 445–69. San Diego: Academic Press.Google Scholar
Cerling, T. E. & Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120, 347–36.Google Scholar
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V. & Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–58.Google Scholar
Chisholm, B., Driver, J., Dube, S. & Schwarcz, H. P. 1986. Assessment of prehistoric bison foraging and movement patterns via stable-carbon isotopic analysis. Plains Anthropologist 113, 193205.Google Scholar
Christiansen, P. 1999. What size were Arctodus simus vs Ursus spelaeus(Carnivora: Ursidae)? Annales Zoologici Fennici 36, 93102.Google Scholar
Christiansen, P. & Harris, J. M. 2009. Craniomandibular morphology and phylogenetic affinities of Panthera atrox: implications for the evolution and paleobiology of the lion lineage. Journal of Vertebrate Paleontology 29, 934–45.Google Scholar
Clark, P. U., Dyke, A. S., Shakun, J. D. Carlson, A. E., Clark, J., Wohlfarth, B., Mitrovica, J. X., Hostetler, S. W. & McCabe, A. M. 2012. The Last Glacial Maximum. Science 325, 710–14.Google Scholar
Clementz, M. T., Fox-Dobbs, K., Wheatley, P. V., Koch, P. L. & Doak, D. F. 2009. Revisiting old bones: coupled carbon isotope analysis of bioapatite and collagen as an ecological and palaeoecological tool. Geological Journal 44, 605–20.Google Scholar
Coltrain, J. B., Harris, J., Cerling, T. E., Ehleringer, J. R., Dearing, M. D., Ward, J. & Allen, J. 2004. Rancho La Brea stable isotope biogeochemistry and its implications for the paleoecology of Late Pleistocene coastal Southeast California. Palaeogeography, Palaeoecology, Palaeoclimatology 205, 199219.Google Scholar
Connin, S. L., Betancourt, J. & Quade, J. 1998. Late Pleistocene C4 plant dominance and summer rainfall in the Southwestern United States from isotopic study of herbivore teeth. Quaternary Research 50, 179–93.Google Scholar
Coplen, T. B. 1988. Normalization of oxygen and hydrogen isotope data. Chemical Geology 72, 293–7.Google Scholar
Coplen, T., Brand, W. A., Gehre, M., Gröning, M., Meijer, H. A. J., Toman, B. & Verkouteren, R. M. 2006. New guidelines for δ13C measurements. Analytical Chemistry 78, 2439–41.CrossRefGoogle ScholarPubMed
Corona-M., E. 2012. Las aves fósiles. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocénico con Restos de Actividad Humana (coord Mirambell, L. E.), pp. 207–23. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–68.Google Scholar
Decker, J. E. & De Wit, M. J. 2005. Carbon isotope evidence for CAM photosynthesis in the Mesozoic. Terra Nova 18, 917.CrossRefGoogle Scholar
Desantis, L. R. G. 2011. Stable isotope ecology of extant tapirs from the Americas. Biotropica 43, 746–54.Google Scholar
Desantis, L. R. G. & MacFadden, B. 2007. Identifying forest environments in Deep Time using fossil tapir: evidence from evolutionary morphology and stable isotopes. Courier Forschungsinstitut Senckenberg 258, 147–57.Google Scholar
Dompierre, H. & Churcher, C. S. 1996. Premaxillary shape is an indicator of the diet of seven extinct Late Cenozoic New World camels. Journal of Vertebrate Paleontology 16, 141–8.Google Scholar
Donohue, S. L., Desantis, L. R. G., Schubert, B. W. & Ungar, P. S. 2013. Was the giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE 8(10): e77531. doi: 10.1371/journal.pone.0077531 Google Scholar
Drucker, D. G. & Bocherens, H. 2009. Carbon stable isotopes of mammal bone as tracer of canopy development and habitat use in temperate and boreal contexts. In Forests Canopies: Forest Production, Ecosystem Health, and Climate Conditions (eds Creighton, J. D. & Roney, P. J.), pp. 28. New York: Nova Science Publisher Inc.Google Scholar
Ehleringer, J. R. & Monson, R. L. 1993. Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24, 411–39.Google Scholar
Fariña, R. A. & Vizcaíno, S. F. 2001. Carved teeth and strange jaws: how glyptodonts masticated. Acta Palaeontologica Polonica 46, 219–34.Google Scholar
Feranec, R. S. 2003. Stable isotopes, hypsodonty, and the paleodiet of Hemiauchenia (Mammalia: Camelidae): a morphological specialization creating ecological generalization. Paleobiology 29, 230–42.Google Scholar
Feranec, R. S. 2004. Geography variation in the diet of hypsodont herbivores from the Rancholabrean of Florida. Palaeogeography, Palaeoecology, Palaeoclimatology 207, 359–69.Google Scholar
Feranec, R. S. 2005. Growth rate and duration of growth in the adult canine of Smilodon gracilis, and inferences on the diet through stable isotopes analyses. Bulletin of the Florida Museum of Natural History 45, 369–77.Google Scholar
Feranec, R. S. 2007. Ecological generalization during adaptive radiation: evidence from Neogene mammals. Evolutionary Ecology Research 9, 555–77.Google Scholar
Feranec, R. S. & Desantis, L. R. G. 2014. Understanding specifics in generalist diets of carnivorans by analyzing stable carbon isotope values in Pleistocene mammals of Florida. Paleobiology 40, 477–93.Google Scholar
Feranec, R. S. & MacFadden, B. 2006. Isotopic discrimination of resource partitioning among ungulates in C3-dominated communities from the Miocene of Florida and California. Paleobiology 32, 191205.Google Scholar
Figuerido, B., Pérez-Claros, J. A., Torregosa, V., Martín-Serra, A. & Palmqvist, P. 2010. Demythologizing Arctodus simus, the “short-faced” long-legged and predaceous bear that never was. Journal of Vertebrate Paleontology 30, 262–75.Google Scholar
Flores, D. A. 2012. Cambios paleoclimáticos durante el Pleistoceno-Holoceno en un área semidesértica, Cedral. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocenico con Restos de Actividad Humana (coord. Mirambell, L. E.), pp. 87146. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Fox-Dobbs, K., Bump, J. K., Peterson, R. O., Fox, D. L. & Koch, P. L. 2007. Carnivore-specific in the foraging ecology of modern and ancient wolf populations: case studies from Isle Royale, Minnesota, and La Brea. Canadian Journal of Zoology 85, 458–71.Google Scholar
Fox-Dobbs, K., Leonard, J. A. & Koch, P. L. 2008. Pleistocene megafauna from Eastern Beringia: paleoecological and paleoenvironmental interpretations of stable carbon and nitrogen isotope and radiocarbon records. Palaeogeography, Palaeoecology, Palaeoclimatology 261, 3046.Google Scholar
Fricke, H. C. & O'Niel, J. R. 1996. Inter-and intra tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoecology, Palaeoclimatology 126, 91–9.Google Scholar
Gadbury, C., Todd, L., Jahren, A. H. & Amundson, R. 2000. Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson-Meng bone bed, Nebraska. Palaeogeography, Palaeoecology, Palaeoclimatology 157, 7993.Google Scholar
Gillete, D. D. & Ray, C. E. 1981. Glyptodonts of North America. Smithsonian Contributions to Paleobiology 40, 1255.Google Scholar
Green, J. L. 2006. Chronoclinal variation and sexual dimorphism in Mammut americanum (American mastodon) from the Pleistocene of Florida. Bulletin of the Florida Museum of Natural History 46, 2959.Google Scholar
Green, J. L. 2009. Dental microwear in the orthodentine of the Xenarthra (Mammalian) and its use in reconstructing the paleodiet of extinct taxa: the case study Nothrotheriops shastensis (Xenartha, Tardigrada, Nothrotheriidea). Zoological Journal of the Linnean Society 156, 201–22.Google Scholar
Green, J. L. & Hulbert, R. C. Jr 2005.The deciduous premolars of Mammut americanum (Mammalian, Proboscidea). Journal of Vertebrate Paleontology 25, 702–15.Google Scholar
Green, J. L., Semprebon, G. M. & Solounias, N. 2005. Reconstructing the paleodiet of Florida Mammut americanum via low-magnification stereomicroscopy. Palaeogeography, Palaeoecology, Palaeoclimatology 223, 3448.Google Scholar
Hall, W. E., Van Devender, T. R. & Olson, C. A. 1988. Late Quaternary arthropod remains from Sonoran Desert packrat middens, Southwestern Arizona and Northwestern Sonora. Quaternary Research 29, 277–93.Google Scholar
Hintze, J. 2004. NCSS and PASS. Kaysville, Utah: Number Cruncher Statistical System. Available at http://www.ncss.com.Google Scholar
Honey, J. G., Harrison, J. A., Prothero, D. R. & Stevens, M. S. 1998. Camelidae . In Evolution of Tertiary Mammals of North America, Vol. 1. Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals (eds Janis, M., Scott, K. M. & Jacobs, L. L.), pp. 439–62. Cambridge: Cambridge University Press.Google Scholar
Hoppe, K. A. 2004. Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30, 129–45.Google Scholar
Johnson, E., Arroyo-Cabrales, J. & Polaco, O. J. 2006. Climate, environment, and game animal resources of the Late Pleistocene Mexican grassland. In El Hombre Temprano en América y sus Implicaciones en el Poblamiento de la Cuenca de México (coords Jiménez, L. J. C., González, S., Pompa y Padilla, J. A. & Ortíz, P.), pp. 231–45. Colección Científica, 500, Instituto Nacional de Antropología e Historia.Google Scholar
Koch, P. L. 1998. Isotopic reconstruction of past continental environments. Annual Review of Earth and Planetary Sciences 26, 573613.Google Scholar
Koch, P. L., Diffenbaugh, N. S. & Hoppe, K. A. 2004. The effects of late Quaternary climate and P CO2 change on C4 plant abundance in the south-central United States. Palaeogeography, Palaeoecology, Palaeoclimatology 207, 331–57.Google Scholar
Koch, P. L., Fogel, M. L. & Tuross, N. 1994. Tracing the diets of fossil animals using stable isotopes. In Stable Isotopes in Ecology and Environmental Science (eds Lajtha, K. & Michener, R. H.), pp. 6392. Oxford: Blackwell Scientific.Google Scholar
Koch, P. L., Hoppe, K. A. & Webb, S. D. 1998. The isotopic ecology of late Pleistocene mammals in North America. Part 1. Florida. Chemical Geology 152, 119–38.Google Scholar
Kohn, M. J., McKay, M. P. & Knight, J. L. 2005. Dining in the Pleistocene–who's on the menu? Geology 33, 649–52.Google Scholar
Koch, P. L., Tuross, N. & Fogel, M. L. 1997. The effects of simple treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24, 417–29.Google Scholar
Kurtén, B. & Anderson, E. 1980. Pleistocene Mammals of North America. New York: Columbia University Press, 442 pp.Google Scholar
Leeper, B. T., Frolking, T. A., Fisher, D. C., Goldstein, G. & Sanger, J. E. 1991. Intestinal contents of Late Pleistocene mastodon from midcontinental North America. Quaternary Research 36, 120–25.Google Scholar
Leyden, J. J. & Oetelaar, G. A. 2001. Carbon and nitrogen isotopes in archaeological bison remains as indicators of paleoenvironments change in Southern Alberta. Great Plains Research 11, 223.Google Scholar
Lorenzo, J. L. & Mirambell, L. 1986. Preliminary report on archeological and paleoenvironmental studies in the area of El Cedral, San Luis Potosí, México. In New Evidence for the Pleistocene Peopling of the Americas (ed. Bryan, A. L.), pp. 107–13. Orono, Maine, Center for the Study of the Early Man. University of Maine, Peopling of the Americas, Symposia Series.Google Scholar
MacFadden, B. & Cerling, T. E. 1996. Mammalian herbivore communities, ancient feeding ecology, and carbon isotopes: a 10 million-year sequence from the Neogene of Florida. Journal of Vertebrate Paleontology 16, 103–15.Google Scholar
Marino, B. D. & McElroy, M. B. 1991. Isotopic composition of atmospheric CO2 inferred from carbon in C4 plant cellulose. Nature 249, 127–31.Google Scholar
Marino, B. D., McElroy, M. B., Salawitch, R. J. & Spaulding, W. G. 1992. Glacial-to-interglacial variations in the carbon isotopic composition of atmospheric CO2 . Nature 357, 461–6.Google Scholar
Matheus, P. E. 1995. Diet and co-ecology of Pleistocene short-faced-bears and brown bears in Eastern Beringia. Quaternary Research 44, 447–53.Google Scholar
McDonald, H. G. 2005. Paleoecology of extinct xenarthrans and the Great American Biotic Interchange. Bulletin of the Florida Museum of Natural History 45, 313–33.Google Scholar
McDonald, H. G. & Pelikan, S. 2006. Mammoths and mylodonts: exotic species from two different continents in North America Pleistocene faunas. Quaternary International 142–143, 229–41.Google Scholar
McInerney, F. A., Strömberg, C. A. E. & White, J. W. C. 2011. The Neogene transition from C3 to C4 grassland in North America: stable carbon isotope ratios of fossil phytoliths. Paleobiology 37, 2349.Google Scholar
Medrano, H. & Flexas, J. 2000. Fotorrespiración y mecanismos de concentración del dióxido de carbón. In Fundamentos de Fisiología Vegetal (eds Azcón-Bieto, J. & Talón, M.), pp. 187201. Barcelona: McGraw-Hill Interamericana.Google Scholar
Meloro, C. 2012. Mandibular shape correlates of tooth fracture in extant Carnivora: implications to inferring feeding behaviour of Pleistocene predators. Biological Journal of the Linnean Society 106, 7080.Google Scholar
Metcalfe, S. E. 2006. Late Quaternary environments of the northern deserts and Central Transvolcanic Belt of Mexico. Annals of the Missouri Botanical Garden 93, 258–73.Google Scholar
Metcalfe, J. Z. 2011. Late Pleistocene climate and proboscidean paleoecology in North American: insights from stable isotope compositions of skeletal remains. Ph.D. thesis, University of Western Ontario, Ontario, Canada. Published thesis.Google Scholar
Mirambell, L. 1982. Las excavaciones. In Laguna de las Cruces, Salinas, S. L. P. Un Sitio Paleontológico del Pleistoceno Final (ed. Mirambell, L.), pp. 12–8. Instituto Nacional de Antropología e Historia – Colección Científica 128.Google Scholar
Mirambell, L. E. & Lorenzo, J. L. 2012. Restos de materiales de cultura. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocenico con Restos de Actividad Humana (coord. Mirambell, L. E.), pp. 7186. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Naranjo, P. E. J. 2009. Tapir: el mayor mamífero de las selvas Mexicanas. Especies. Revista sobre Conservación y Biodiversidad 19, 1621.Google Scholar
Newsom, L. A. & Mihlbachler, M. C. 2006. Mastodon (Mammut americanum) diet foraging patterns based on analysis of dung deposits. In First Floridians and Last Mastodons: The Page-Ladson Site in the Aucilla River (ed. Weeb, S. D.), pp. 214326. Dordrecht: Springer.Google Scholar
O'Leary, M. H. 1988. Carbon isotopes in photosynthesis. Bioscience 38, 328–36.Google Scholar
Olivera-Carrasco, M. T. 2012. Moluscos continentals de Cedral, un sitio del Pleistoceno final de México. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocenico con Restos de Actividad Humana (coord Mirambell, L. E.), pp. 225–82. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Palmqvist, P., Pérez-Claros, J. A., Janis, C. M., Figueirido, B., Torregrosa, V. & Gröcker, D. 2008. Biogeochemical and ecomorphological inferences on prey selection and resource partitioning among mammalian carnivores in an Early Pleistocene community. Palaios 11–12, 724–37.Google Scholar
Pérez-Crespo, V. A., Sánchez-Chillón, B., Arroyo-Cabrales, J., Alberdi, M. T., Polaco, O. J., Santos-Moreno, A., Benammi, M., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2009. La dieta y el hábitat del mamut y los caballos del Pleistoceno tardío de El Cedral con base en isótopos estables (δ13C, δ18O). Revista Mexicana de Ciencias Geologicas 26, 347–55.Google Scholar
Pérez-Crespo, V. A., Arroyo-Cabrales, J., Alva-Valdivia, L. M., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2012 a. Datos isotópicos (δ13C, δ18O) de la fauna pleistocenica de la Laguna de las Cruces, San Luis Potosí, México. Revista Mexicana de Ciencias Geológicas 9, 299307.Google Scholar
Pérez-Crespo, V. A., Arroyo-Cabrales, J., Benammi, M., Johnson, E., Polaco, O. J., Santos-Moreno, A., Morales-Puente, P. & Cienfuegos-Alvarado, E. 2012 b. Geographic variation on diet and habitat of the Mexican populations of Columbian Mammoth (Mammuthus columbi) in México. Quaternary International 276–277, 816.Google Scholar
Poinar, H. N., Hofreiter, M., Spaulding, W. G., Martin, P. S., Stankiewicz, B. A., Bland, H., Evershed, R. P., Possnert, G. & Pääbo, S. 1998. Molecular coproscopy: dung and diet of extinct ground sloth Nothrotheriops shastensis . Science 218, 402–6.Google Scholar
Révész, K. M. & Landwehr, J. M. 2002. δ13C and δ18O isotopic composition of CaCO3 measured by continuous flow isotope ratio mass spectrometry: statistical evaluation and verification by application to Devils Hole core DH-11 calcite. Rapid Communications in Mass Spectrometry 16, 2012–114.Google Scholar
Rivals, F. & Semprebon, G. M. 2006. A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana . Journal of Vertebrate Paleontology 26, 495500.Google Scholar
Rivals, F., Semprebon, G. & Lister, A. 2012. An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Paloeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quaternary International 255, 188–95.Google Scholar
Rivals, F., Solounias, N. & Mihlbachler, M. C. 2007. Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison . Quaternary Research 68, 338–46.Google Scholar
Ruez, D. R. Jr. 2005. Diet of Pleistocene Paramylodon harlani (Xenarthra: Mylodontidae): review of methods and preliminary use of carbon isotopes. Texas Journal of Science 57, 329–44.Google Scholar
Sánchez, B. 2005. Reconstrucción del ambiente de mamíferos extintos a partir del análisis isotópico de los restos esqueléticos. In Nuevas Técnicas Aplicadas al Estudio de los Sistemas Ambientales: Los Isótopos Estables (eds Alcorno, P., Redondo, R. & Toledo, J.), pp. 4964. Universidad Autónoma de Madrid, España.Google Scholar
Sánchez, G., Holliday, V. T., Gaines, E. P., Arroyo-Cabrales, J., Martínez-Tagüeña, N., Kowler, A., Lange, T., Hodgins, G. W. L., Mentzer, S. M. & Sánchez-Morales, I. 2014. Human (Clovis)–gomphothere (Cuvieronius sp.) association – 13,390 calibrated yBP in Sonora, Mexico. Proceedings of the National Academy of Sciences 111, 10972–7.Google Scholar
Sánchez-Martínez, F. & Alvarado, J. L. 2012. Análisis palinológico. In Rancho “La Amapola”, Cedral. Un Sitio Arqueológico-Paleontológico Pleistocénico-Holocenico con Restos de Actividad Humana (coord. Mirambell, L. E.), pp. 285–94. Colección Interdisciplinaria, Serie Memorias. México: Instituto Nacional de Antropología e Historia.Google Scholar
Schoeninger, M. J., Kohn, M. & Valley, J. W. 2000. Tooth oxygen isotopes ratios as paleoclimate monitors in arid ecosystems. In Biogeochemical Approaches to Paleodietary Analysis (eds Ambrose, S. H. & Katzemberg, M. A.), pp. 117–40. New York: Kluwer Academic/Plenum Publisher.Google Scholar
Semprebon, G. M. & Rivals, F. 2007. Was grass more prevalent in the pronghorn past? An assessment of dietary adaptations of Miocene to recent Antilocapridae (Mammalian: Artiodactyla). Palaeogeography, Palaeoecology, Palaeoclimatology 253, 332–47.Google Scholar
Semprebon, G. M. & Rivals, F. 2010. Trends in the paleodietary habits of fossil camels from the Tertiary and Quaternary of North America. Palaeogeography, Palaeoecology, Palaeoclimatology 295, 131–45.Google Scholar
Smith, B. N. & Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47, 380–4.Google Scholar
Sponheirmer, M. & Lee-Thorp, J. A. 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archaeological Science 26, 723–8.Google Scholar
Talamoni, S. A. & Assis, A. C. 2009. Feeding habit of the Brazilian tapir, Tapirus terrestris (Perissodactyla: Tapiradae) in a vegetation transition zone in the south-eastern Brazil. Zoologia 26, 251–4.Google Scholar
Thompson, R. S., Van Devender, T. R., Martin, P. S., Foppe, T. & Long, A. 1980. Shasta ground sloth (Nothrotheriops shastense Hoffsteter) at Shelter Cave, New Mexico: environment, diet, and extinction. Quaternary Research 14, 360–76.Google Scholar
Trayler, R. B. 2012. Stable isotope records of inland California megafauna – new insights into Pleistocene paleoecology and paleoenvironmental conditions. M.Sc. thesis, California State University, California, USA. Published thesis.Google Scholar
Van Der Merwe, N. J. & Medina, E. 1989. Photosynthesis and 13C/12C ratios in Amazonian rain forest. Geochimica et Cosmochimica Acta 53, 1091–4.Google Scholar
Vizcaíno, S. F. 2000. Vegetation partitioning among Lujanian (Late-Pleistocene/Early-Holocene) armored herbivores in the Pampean region. Current Research in the Pleistocene 17, 135–6.Google Scholar
Vizcaíno, S. F., De Iuliis, G. & Bargo, M. S. 1998. Skull shape, masticatory apparatus, and diet of Vassallia and Holmesina (Mammalia: Xenarthra: Pampatheridae); when anatomy constrains destiny. Journal of Mammalian Evolution 5, 291322.Google Scholar
Vizcaíno, S. F., Fariña, R. A., Bargo, M. S. & De Iuliis, G. 2004. Functional and phylogenetic assessment of the masticatory adaptations in Cingulata (Mammalia, Xenarthra). Ameghiniana 41, 651–64.Google Scholar
Wang, X. & Tedford, R. H. 2008. Dogs: Their Fossil Relatives and Evolutionary History. New York: Columbia University Press, 232 pp.Google Scholar
Werner, R. A. & Brand, W. A. 2001. Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501–19.Google Scholar
White, T. D., Asfaw, B., Beyene, Y., Haile-Salassie, Y., Owenlevejoy, C., Suwa, G. & Woldegabriel, G. 2009. Ardipithecus ramidus and the paleobiology of early hominds. Science 326, 7586.Google Scholar
Wing, S. L., Sues, H.-D., Potts, R., Dimicheli, W. A. & Behrensmeyer, A. K. 1992. Evolutionary paleoecology. In Terrestrial Ecosystems Through Time: Evolutionary Paleoecology of Terrestrial Plants and Animals (eds Behrensmeyer, A. K., Damuth, J. D., DiMicheli, W. A., Potts, R., Sues, H.-D. & Wing, S. L.), pp. 15136. Chicago: University of Chicago Press.Google Scholar
Zanazzi, A. & Kohn, M. J. 2008. Ecology and physiology of White River mammals based on stable isotopes ratios of teeth. Palaeogeography, Palaeoecology, Palaeoclimatology 257, 2237.Google Scholar
Supplementary material: File

Pérez-Crespo supplementary material

Table S1

Download Pérez-Crespo supplementary material(File)
File 11 KB
Supplementary material: File

Pérez-Crespo supplementary material

Table S2

Download Pérez-Crespo supplementary material(File)
File 11.2 KB