Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T01:58:34.345Z Has data issue: false hasContentIssue false

Detrital zircon geochronology and geochemistry of Jurassic sandstones in the Xiongcun district, southern Lhasa subterrane, Tibet, China: implications for provenance and tectonic setting

Published online by Cambridge University Press:  18 April 2018

XINGHAI LANG
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
DONG LIU*
Affiliation:
College of Management Science, Chengdu University of Technology, Chengdu 610059, China
YULIN DENG
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China
JUXING TANG
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
XUHUI WANG
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China
ZONGYAO YANG
Affiliation:
Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
ZHIWEI CUI
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China
YONGXIN FENG
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China
QING YIN
Affiliation:
College of Earth Science and MLR Key Laboratory of Tectonic Controls on Mineralization and Hydrocarbon Accumulation, Chengdu University of Technology, Chengdu 610059, China
FUWEI XIE
Affiliation:
Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China
YONG HUANG
Affiliation:
Chengdu Center of China Geological Survey, Chengdu 610081, China
JINSHU ZHANG
Affiliation:
College of Engineering, Tibet University, Lhasa 850012, China
*
Author for correspondence: [email protected]

Abstract

Jurassic sandstones in the Xiongcun porphyry copper–gold district, southern Lhasa subterrane, Tibet, China were analysed for petrography, major oxides and trace elements, as well as detrital zircon U–Pb and Hf isotopes, to infer their depositional age, provenance, intensity of source-rock palaeo-weathering and depositional tectonic setting. This new information provides important evidence to constrain the tectonic evolution of the southern Lhasa subterrane during the Late Triassic – Jurassic period. The sandstones are exposed in the lower and upper sections of the Xiongcun Formation. Their average modal abundance (Q21F11L68) classifies them as lithic arenite, which is also supported by geochemical studies. The high chemical index of alteration values (77.19–85.36, mean 79.96) and chemical index of weathering values (86.19–95.59, mean 89.98) of the sandstones imply moderate to intensive weathering of the source rock. Discrimination diagrams based on modal abundance, geochemistry and certain elemental ratios indicate that felsic and intermediate igneous rocks constitute the source rocks, probably with a magmatic arc provenance. The detrital zircon ages (161–243 Ma) and εHf(t) values (+10.5 to +16.2) further constrain the sandstone provenance as subduction-related Triassic–Jurassic felsic and intermediate igneous rocks from the southern Lhasa subterrane. A tectonic discrimination method based on geochemical data of the sandstones, as well as detrital zircon ages from sandstones, reveals that the sandstones were most likely deposited in an oceanic island-arc setting. These results support the hypothesis that the tectonic background of the southern Lhasa subterrane was an oceanic island-arc setting, rather than a continental island-arc setting, during the Late Triassic – Jurassic period.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmad, T., Tanaka, T., Sachan, H. K., Asahara, Y., Islam, R. & Khanna, P. P. 2008. Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: Implications for the Neo-Tethyan subduction along the Indus suture zone. Tectonophysics 451 (1–4), 206–24.Google Scholar
Aitchison, J. C., Ali, J. R. & Davis, A. M. 2007. When and where did India and Asia collide? Journal of Geophysical Research 112. B05423.Google Scholar
Andersen, T. 2002. Correction of common lead in U–Pb analyses that do not report 204Pb. Chemical Geology 192 (1), 5979.Google Scholar
Andersen, T. 2005. Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. Chemical Geology 216, 249–70.Google Scholar
Augustsson, C., Münker, C., Bahlburg, H. & Fanning, C. M. 2006. Provenance of late Palaeozoic metasediments of the SW South American Gondwana margin: a combined U–Pb and Hf-isotope study of single detrital zircons. Journal of the Geological Society 163, 983–95.Google Scholar
Bhatia, M. R. 1983. Plate tectonics and geochemical composition of sandstones. Journal of Geology 91, 611–27.Google Scholar
Bhatia, M. R. 1985. Rare earth element geochemistry of Australian Paleozoic graywackes and mudrocks: provenance and tectonic control. Sedimentary Geology 45 (1), 97113.Google Scholar
Bhatia, M. R. & Crook, K. A. 1986. Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92 (2), 181–93.Google Scholar
Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J. & Foudoulis, C. 2003. TEMORA 1: a new zircon standard for Phanerozoic U–Pb geochronology. Chemical Geology 200 (1), 155–70.Google Scholar
Bouvier, A., Vervoort, J. D. & Patchett, P. J. 2008. The Lu–Hf and Sm–Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters 273, 4857.Google Scholar
Brown, E. R. & Gehrels, G. E. 2007. Detrital zircon constraints on terrane ages and affinities and timing of orogenic events in the San Juan Islands and North Cascades, Washington. Canadian Journal of Earth Sciences 44 (10), 1375–96.Google Scholar
Cawood, P. A., Hawkesworth, C. J. & Dhuime, B. 2012. Detrital zircon record and tectonic setting. Geology 40, 875–8.Google Scholar
Chen, Y., Zhang, Z. C., Li, K., Yu, H. F. & Wu, T. R. 2016. Detrital zircon U–Pb ages and Hf isotopes of Permo-Carboniferous sandstones in central InnerMongolia, China: implications for provenance and tectonic evolution of the southeastern Central Asian Orogenic Belt. Tectonophysics 671, 183201.Google Scholar
Chu, M. F., Chung, S. L., O'Reilly, S. Y., Pearson, N. J., Wu, F. Y., Li, X. H., Liu, D. Y., Ji, J. Q., Chu, C. H. & Lee, H. Y. 2011. India's hidden inputs to Tibetan orogeny revealed by Hf isotopes of Transhimalayan zircons and host rocks. Earth and Planetary Science Letters 307 (3), 479–86.Google Scholar
Chu, M. F., Chung, S. L., Song, B., Liu, D., O'Reilly, S. Y., Pearson, N. J., Ji, J. & Wen, D. J. 2006. Zircon U–Pb and Hf isotope constraints on the Mesozoic tectonics and crustal evolution of southern Tibet. Geology 34 (9), 745–8.Google Scholar
Chu, N. C., Taylor, R. N., Chavagnac, V., Nesbitt, R. W., Boella, R. M., Milton, J. A., Germain, C. R., Bayon, G. & Burton, K. 2002. Hf isotope ratio analysis using multicollector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–74.Google Scholar
Chung, S. L., Chu, M. F., Zhang, Y., Xie, Y., Lo, C. H., Lee, T. Y., Lan, C.Y., Li, X. H., Zhang, Q. & Wang, Y. Z. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews 68 (3), 173–96.Google Scholar
Cullers, R. L. 2000. The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51 (3), 181203.Google Scholar
De Bievre, P. & Taylor, P. D. P. 1993. Table of the isotopic composition of the elements. International Journal of Mass Spectrometry and Ion Processes 123, 149– 66.Google Scholar
Dickinson, W. R. 1970. Interpreting detrital modes of greywacke and arkose. Journal of Sedimentary Petrology 40, 695707.Google Scholar
Dickinson, W. R. 1985. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites (ed. Zuffa, G. G.), pp. 333–61. NATO, Advanced Study Institute Series no. 148.Google Scholar
Dickinson, W. R., Beard, L. S., Brakenridge, G. R., Erjavec, J. L., Ferguson, R. C., Inman, K. F., Knepp, R. A., Lindberg, F. A. & Ryberg, P. T. 1983. Provenance of North American Phanerozoic sandstones in relation to tectonic setting. Geological Society of America Bulletin 94 (2), 222–35.Google Scholar
Dickinson, W. R. & Gehrels, G. E. 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: a test against a Colorado plateau Mesozoic database. Earth and Planetary Science Letters 288 (1–2), 115–25.Google Scholar
Dickinson, W. R. & Suczek, C. A. 1979. Plate Tectonics and sandstone composition. AAPG Bulletin 63 (12), 2164–82.Google Scholar
Ding, L., Kapp, P. & Wan, X. Q. 2005. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 24, 118.Google Scholar
Dong, C. Y., Li, C., Wan, Y. S., Wang, W., Wu, Y. W., Jie, K. Q. & Liu, D. Y. 2011. Detrital zircon age model of ordovician wenquan quartzite south of lungmuco-shuanghu suture in the Qiangtang area, Tibet: constraint on tectonic affinity and source regions. Science China Earth Sciences 54 (7), 1034–42 (in Chinese with English abstract).Google Scholar
Du, L. L., Yang, C. H., Wyman, D. A., Nutman, A. P., Lu, Z. L., Song, H. X., Zhao, L., Geng, Y. S. & Ren, L. D. 2016. Age and depositional setting of the Paleoproterozoic Gantaohe Group in Zanhuang Complex: constraints from zircon U–Pb ages and Hf isotopes of sandstones and dacite. Precambrian Research 286, 59100.Google Scholar
Fedo, C. M., Nesbitt, H. W. & Young, G. M. 1995. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23 (10), 921–4.Google Scholar
Floyd, P. A. & Leveridge, B. E. 1987. Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society 144 (4), 531–42.Google Scholar
Gazzi, P. 1966. Le arenarie del flysch sopracretaceo dell'Appennino modenese: correlazione con il flysch di Monghidoro. Mineralogica et Petrographica Acta 12, 6997.Google Scholar
Gehrels, G. E. 2015. Detrital zircon U–Pb geochronology applied to tectonics. Annual Review of Earth and Planetary Sciences 42 (1), 127–49.Google Scholar
Gehrels, G. E., Decelles, P. G., Ojha, T. P. & Upreti, B. N. 2006. Geologic and U–Pb geochronologic evidence for early Paleozoic tectonism in the Dadeldhura thrust sheet, far-west Nepal Himalaya. Journal of Asian Earth Sciences 28 (4–6), 385408.Google Scholar
Gehrels, G. E., Kapp, P., Decelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., Mcquarrie, N. & Yin, A. 2011. Detrital zircon geochronology of pre-tertiary strata in the Tibetan-Himalayan orogen. Tectonics 30 (5), 127.Google Scholar
Geng, Q. R., Pan, G. T., Wang, L. Q., Zhu, D. C. & Liao, Z. L. 2006. Isotopic geochronology of the volcanic rocks from the Yeba Formation in the Gangdise zone, Xizang. Sedimentary Geology and Tethyan Geology 26 (1), 17 (in Chinese with English abstract).Google Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archean crustal evolution in the northern Yilgarn craton: U–Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.Google Scholar
Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., O'Reilly, S. Y., Xu, X. & Zhou, X. 2002. Zircon chemistry and magma mixing, SE China: insitu analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237–68.Google Scholar
Gu, X. X., Liu, J. M., Zheng, M. H., Tang, J. X. & Qi, L. 2002. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. Journal of Sedimentary Research 72 (3), 393407.Google Scholar
Guo, L. S., Liu, Y. L., Liu, S. W., Cawood, P. A., Wang, Z. H. & Liu, H. F. 2013. Petrogenesis of Early to Middle Jurassic granitoid rocks from the Gangdese belt, Southern Tibet: Implications for early history of the Neo-Tethys. Lithos 179, 320–33.Google Scholar
Han, G. Q., Liu, Y. J., Neubauer, F., Genser, J., Zhao, Y., Wen, Q. B., Li, Wei., Wu, L. N., Jiang, X. Y. & Zhao, L. N. 2012. Provenance analysis of Permian sandstones in the central and southern Da Xing'an Mountains, China: constraints on the evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics 580, 100–13.Google Scholar
Harnois, L. 1988. The CIW index: a new chemical index of weathering. Sedimentary Geology 55, 319–22.Google Scholar
Hayashi, K. I., Fujisawa, H., Holland, H. D. & Ohmoto, H. 1997. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61 (19), 4115–37.Google Scholar
He, D. F., Zhu, W. G., Zhong, H., Ren, T., Bai, Z. J. & Fan, H. P. 2013. Zircon U–Pb geochronology and elemental and Sr–Nd–Hf isotopic geochemistry of the Daocheng granitic pluton from the Yidun Arc, SW China. Journal of Asian Earth Sciences 67, 117.Google Scholar
Hou, Z. Q., Duan, L. F., Lu, Y. J., Zheng, Y. C., Zhu, D. C., Yang, Z. M., Yang, Z. S., Wang, B. D., Pei, Y. R., Zhao, Z. D. & McCuaig, T. C. 2015a. Lithospheric architecture of the Lhasa Terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Economic Geology 110, 1541–75.Google Scholar
Hou, Z. Q., Gao, Y. F., Qu, X. M., Rui, Z. Y. & Mo, X. X. 2004. Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth and Planetary Science Letters 220 (1), 139–55.Google Scholar
Hou, Z. Q., Yang, Z. M., Lu, Y. J., Kemp, A., Zheng, Y. C., Li, Q. Y., Tang, J. X., Yang, Z. S. & Duan, L. F. 2015b. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43 (3), 247–50.Google Scholar
Huang, F., Xu, J. F., Chen, J. L., Kang, Z. Q. & Dong, Y. H. 2015. Early Jurassic volcanic rocks from the Yeba Formation and Sangri Group: products of continental marginal arc and intra-oceanic arc during the subduction of Neo-tethys ocean? Acta Petrologica Sinica 31 (7), 2089–00 (in Chinese with English abstract).Google Scholar
Iizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 121–37.Google Scholar
Ji, W. Q., Wu, F. Y., Chung, S. L., Li, J. X. & Liu, C. Z. 2009. Zircon U–Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology 262 (3), 229–45.Google Scholar
Kang, Z. Q., Xu, J. F., Wilde, S. A., Feng, Z. H., Chen, J. L., Wang, B. D., Fu, W. C. & Pan, H. B. 2014. Geochronology and geochemistry of the Sangri Group volcanic rocks, Southern Lhasa Terrane: implications for the early subduction history of the Neo-Tethys and Gangdese Magmatic Arc. Lithos 200–201, 157–68.Google Scholar
Kapp, P., Decelles, P. G., Gehrels, G. E., Heizler, M. & Ding, L. 2007a. Geological records of the Cretaceous Lhasa–Qiangtang and Indo–Asian collisions in the Nima basin area, central Tibet. Geological Society of America Bulletin 119, 917–32.Google Scholar
Kapp, P., Decelles, P. G., Leier, A. L., Fabijanic, J. M., He, S. D., Pullen, A. & Gehrels, G. E. 2007b. The Gangdese retroarc thrust belt revealed. GSA Today 17 (7), 49.Google Scholar
Kapp, P., Yin, A., Harrison, T. M. & Ding, L. 2005. Cretaceous–Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society America Bulletin 117, 865–78.Google Scholar
Khan, K. F., Dar, S. A. & Khan, S. A. 2012. Geochemistry of phosphate bearing sedimentary rocks in parts of Sonrai block, Lalitpur District, Uttar Pradesh, India. Chemie der Erde – Geochemistry 72 (2), 117–25.Google Scholar
Kurian, S., Nath, B. N., Kumar, N. C. & Nair, K. K. 2013. Geochemical and isotopic signatures of surficial sediments from the western continental shelf of India: inferring provenance, weathering, and the nature of organic matter. Journal of Sedimentary Research 83 (6), 427–42.Google Scholar
Lang, X. H., Tang, J. X., Li, Z. J., Dong, S. Y., Ding, F., Wang, Z. Z., Zhang, L. & Huang, Y. 2012. Geochemical evaluation of exploration prospect in the Xiongcun copper-gold district and peripheral areas, Xietongmen County, Tibet. Geology and Exploration 48 (1), 1223 (in Chinese with English abstract).Google Scholar
Lang, X. H., Tang, J. X., Li, Z. J., Huang, Y., Ding, F., Yang, H. H., Xie, F. W., Zhang, L., Wang, Q. & Zhou, Y. 2014. U–Pb and Re–Os geochronological evidence for the Jurassic porphyry metallogenic event of the Xiongcun district in the Gangdese porphyry copper belt, southern Tibet, PRC. Journal of Asian Earth Sciences 79, 608–22.Google Scholar
Lang, X. H., Wang, X. H., Tang, J. X., Deng, Y. L., Cui, Z. W., Yin, Q. & XieF, W. F, W. 2017. Composition and age of Jurassic diabase dikes in the Xiongcun porphyry copper–gold district, southern margin of the Lhasa terrane, Tibet, China: petrogenesis and tectonic setting. Geological Journal, published online 20 October 2017. doi: 10.1002/gj.3028.Google Scholar
Lee, H. Y., Chung, S. L., Lo, C. H., Ji, J., Lee, T. Y., Qian, Q. & Zhang, Q. 2009. Eocene Neotethyan slab breakoff in southern Tibet inferred from the Linzizong volcanic record. Tectonophysics 477 (1), 2035.Google Scholar
Leier, A. L., Paul, K., Gehrels, G. E. & Decelles, P. G. 2007. Detrital zircon geochronology of Carboniferous–Cretaceous strata in the Lhasa terrane, Southern Tibet. Basin Research 19 (3), 361–78.Google Scholar
Li, C. S., Arndt, N. T., Tang, Q. Y. & Ripley, E. M. 2015. Trace element indiscrimination diagrams. Lithos 232, 7683.Google Scholar
Li, J. X., Qin, K. Z., Li, G. M., Xiao, B., Chen, L. & Zhao, J. X. 2011. Post-collisional ore-bearing adakitic porphyries from Gangdese porphyry copper belt, southern Tibet: melting of thickened juvenile arc lower crust. Lithos 126 (3), 265–77.Google Scholar
Ma, S. W., Meng, Y. K., Xu, Z. Q. & Liu, X. J. 2017a. The discovery of Late Triassic mylonitic granite and geologic significance in the middle Gangdese batholiths, southern Tibet. Journal of Geodynamics 104, 4964.Google Scholar
Ma, X. X., Xu, Z. Q., Meert, J. & Santosh, M. 2017b. Early Jurassic intra-oceanic arc system of the Neotethys Ocean: Constraints from andesites in the Gangdese magmatic belt, south Tibet. Island Arc, published online 30 June 2017. doi: 10.1111/iar.12202.Google Scholar
Ma, X. X., Yi, Z. Y. & Xu, Z. Q. 2017. Late Triassic intraoceanic arc aystem within Neotethys: evidence from cumulate hornblende gabbro in Gangdese Belt, South Tibet. Acta Geologica Sinica (English Edition) 91 (S1), 21.Google Scholar
Mahéo, G., Bertrand, H., Guillot, S., Villa, I. M., Keller, F. & Capiez, P. 2004. The South Ladakh Ophiolites (NW Himalaya, India): an intra-oceanic tholeiitic arc origin with implication for the closure of the Neo-Tethys. Chemical Geology 203 (3), 273303.Google Scholar
McDermid, I. R., Aitchison, J. C., Davis, A. M., Harrison, T. M. & Grove, M. 2002. The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet. Chemical Geology 187, 267–77.Google Scholar
McLennan, S. M. 1993. Weathering and global denudation. The Journal of Geology 101, 295303.Google Scholar
McLennan, S. M., Hemming, S., McDaniel, D. K. & Hanson, G. N. 1993. Geochemical approaches to sedimentation, provenance, and tectonics. Special Paper of the Geological Society of America 284, 2140.Google Scholar
McLennan, S. M. & Taylor, S. R. 1991. Sedimentary rocks and crustal evolution: tectonic setting and secular trends. Journal of Geology 99 (1), 121.Google Scholar
McQuarrie, N., Robinson, D., Long, S., Tobgay, T., Grujic, D., Gehrels, G. & Ducea, M. 2008. Preliminary stratigraphic and structural architecture of Bhutan: implications for the along strike architecture of the Himalayan system. Earth and Planetary Science Letters 272 (1), 105–17.Google Scholar
Meng, Y. K., Dong, H. W., Cong, Y., Xue, Z.Q. & Cao, H. 2016a. The early-stage evolution of the Neo-Tethys ocean: evidence from granitoids in the middle Gangdese batholith, southern Tibet. Journal of Geodynamics 94–95, 3449.Google Scholar
Meng, Y. K., Xu, Z. Q., Santosh, M., Ma, X. X., Chen, X. J., Guo, G. L. & Liu, F. 2016b. Late Triassic crustal growth in southern Tibet: evidence from the Gangdese magmatic belt. Gondwana Research 37, 449–64.Google Scholar
Metcalfe, I. 2006. Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research 9 (1–2), 2446.Google Scholar
Mo, X. X., Dong, G. C., Zhao, Z. D., Guo, T. Y., Wang, L. L. & Chen, T. 2005a. Timing of magma mixing in the Gangdise magmatic belt during the India-Asia collision: zircon SHRIMP U–Pb dating. Acta Geologica Sinica (English Edition) 79 (1), 6676.Google Scholar
Mo, X. X., Dong, G. C., Zhao, Z. D., Zhou, S., Wang, L. L., Qiu, R. Z. & Zhang, F. Q. 2005b. Spatial and temporal distribution and characteristics of granitoids in the Gangdese, Tibet and implication for crustal growth and evolution. Geological Journal of China Universities 11 (3), 281–90 (in Chinese with English abstract).Google Scholar
Mo, X. X., Niu, Y. L., Dong, G. C., Zhao, Z. D., Hou, Z. Q., Zhou, S. & Ke, S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: a case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology 250 (1), 4967.Google Scholar
Mo, X. X., Zhao, Z. D., Deng, J. F., Dong, G. C., Zhou, S., Guo, T. Y., Zhang, S. L. & Wang, L. L. 2003. Response of volcanism to the India-Asia collision. Earth Science Frontiers 10 (3), 135–48 (in Chinese with English abstract).Google Scholar
Myrow, P. M., Hughes, N. C., Goodge, J. W., Fanning, C. M., Williams, I. S., Peng, S. C., Bhargava, O. N., Parcha, S. K. & Pogue, K. R. 2010. Extraordinary transport and mixing of sediment across Himalayan central Gondwana during the Cambrian-Ordovician. Geological Society of America Bulletin 122 (9), 1660–70.Google Scholar
Myrow, P. M., Hughes, N. C., Searle, M. P., Fanning, C. M., Peng, S. C. & Parcha, S. K. 2009. Stratigraphic correlation of Cambrian-Ordovician deposits along the Himalaya: implications for the age and nature of rocks in the Mount Everest region. Geological Society of America Bulletin 121 (3–4), 323–32.Google Scholar
Nesbitt, H. W. & Young, G. M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299 (5885), 715–7.Google Scholar
Nesbitt, H. W. & Young, G. M. 1984. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48 (7), 1523–34.Google Scholar
Nesbitt, H. W. & Young, G. M. 1989. Formation and diagenesis of weathering profiles. The Journal of Geology 97 (2), 129–47.Google Scholar
Okada, H. 1971. Classification of sandstones: analysis and proposals. Journal of Geology 79, 509–25.Google Scholar
Osae, S., Asiedu, D. K., Banoeng-Yakubo, B., Koeberl, C. & Dampare, S. B. 2006. Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes. Journal of African Earth Sciences 44, 8596.Google Scholar
Pan, G. T., Mo, X. X., Zhu, D. C., Wang, L. Q., Li, G. M., Zhao, Z. D., Geng, Q. R. & Liao, Z. L. 2006. Spatial-temproral framework of the orogenic belt and its evolution. Acta Petrologica Sinica 22 (3), 521–33 (in Chinese with English abstract).Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Decelles, P. G., Brown, E. H., Fabijanic, J. M. & Ding, L. 2008 a. Gangdese retroarc thrust belt and foreland basin deposits in the Damxung area, southern Tibet. Journal of Asian Earth Sciences 33 (5–6), 323–36.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Ding, L. & Zhang, Q. 2011. Metamorphic rocks in central Tibet: Lateral variations and implications for crustal structure. Geological Society of America Bulletin 123 (3–4), 585600.Google Scholar
Pullen, A., Kapp, P., Gehrels, G. E., Vervoort, J. D. & Ding, L. 2008b. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36 (5), 351–4.Google Scholar
Qi, L., Hu, J. & Grégoire, D. C. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 51 (3), 507–13.Google Scholar
Qiu, J. S., Wang, R. Q., Zhao, J. L. & Yu, S. B. 2015. Petrogenesis of the Early Jurassic gabbro-granite complex in the middle segment of gangdese belt and its implication for tectonic evolution of Neo-tethys: a case study of the Dongga pluton in Xigaze. Acta Petrologica Sinica 31 (12), 3569–80 (in Chinese with English abstract).Google Scholar
Qu, X. M., Hou, Z. Q., Zaw, K. & Li, Y. G. 2007a. Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau: Preliminary geochemical and geochronological results. Ore Geology Reviews 31 (1), 205–23.Google Scholar
Qu, X. M., Xin, H. B. & Xu, W. Y. 2007b. Collation of age of ore-hosting volcanics in Xiongcun superlarge Cu-Au deposit on basis of three zircon U–Pb SHRIMP ages. Mineral Deposits 26 (5), 512–8 (in Chinese with English abstract).Google Scholar
Rolland, Y., Pêcher, A. & Picard, C. 2000. Middle Cretaceous back-arc formation and arc evolution along the Asian margin: the Shyok Suture Zone in northern Ladakh (NW Himalaya). Tectonophysics 325 (1–2), 145–73.Google Scholar
Roser, B. P. & Korsch, R. J. 1988. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical Geology 67 (1), 119–39.Google Scholar
Shi, G. Z., Wang, H., Huang, C. Y., Yang, S. Y. & Song, G. Z. 2016. Provenance and tectonic setting of middle-upper Devonian sandstones in the Qinling Orogen (Shanyang area): new insights from geochemistry, heavy minerals and tourmaline chemistry. Tectonophysics 688, 1125.Google Scholar
Söerlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.Google Scholar
Sun, L. H., Gui, H. R. & Chen, S. 2012. Geochemistry of sandstones from the Neoproterozoic Shijia Formation, northern Anhui Province, China: implications for provenance, weathering and tectonic setting. Chemie der Erde-Geochemistry 72 (3), 253–60.Google Scholar
Sun, S. S. & McDonough, W. S. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in the Ocean Basins (eds Saunders, A. D. & Norry, M. J.), pp. 313–45. Geological Society, London, Special Publication no. 42.Google Scholar
Surpless, K. D., Graham, S. A., Covault, J. A. & Wooden, J. L. 2006. Does the Great Valley Group contain Jurassic strata? Re-evaluation of the age and early evolution of a classic foreland basin. Geology 34, 21–4.Google Scholar
Tafti, R., Lang, J. R., Mortensen, J. K., Oliver, J. L. & Rebagliati, C. M. 2014. Geology and geochronology of the Xietongmen (Xiongcun) Cu–Au porphyry district, southern Tibet, China. Economic Geology 109 (7), 19672001.Google Scholar
Tafti, R., Mortensen, J. K., Lang, J. R., Rebagliati, M. & Oliver, J. L. 2009. Jurassic U–Pb and Re–Os ages for the newly discovered Xietongmen Cu–Au porphyry district, Tibet, PRC: implications for metallogenic epochs in the southern Gangdese belt. Economic Geology 104 (1), 127–36.Google Scholar
Tang, H. F., Zhao, Z. Q., Han, R. S., Han, Y. J. & Su, Y. P. 2008. Primary Hf isotopic study on zircons from the A-type granites in Eastern Junggar of Xinjiang, northwest China. Acta Mineralogica Sinica 28, 335–42 (in Chinese with English abstract).Google Scholar
Tang, J. X., Lang, X. H., Xie, F. W., Gao, Y. M., Li, Z. J., Huang, Y., Ding, F., Yang, H. H., Zhang, L., Wang, Q. & Zhou, Y. 2015. Geological characteristics and genesis of the Jurassic No. I porphyry Cu–Au deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet. Ore Geology Reviews 70, 438–56.Google Scholar
Tang, J. X., Li, F. J., Li, Z. J., Zhang, L., Tang, X. Q., Deng, Q., Lang, X. H., Huang, Y., Yao, X. F. & Wang, Y. 2010. Period of time for the formation of main geologic bodies in Xiongcun copper-gold deposit, Xietongmen County, Tibet: evidence from Zircon U–Pb ages and Re–Os ages of molybdenite. Mineral Deposits 29, 461–75 (in Chinese with English abstract).Google Scholar
Tang, J. X., Li, Z. J., Zhang, L., Huang, Y., Deng, Q. & Lang, X. H. 2007. Geological characteristic of the Xiongcun type porphyry-epithermal copper-gold deposit. Acta Mineralogica Sinica S1, 127–8 (in Chinese).Google Scholar
Taylor, S R & McLennan S, M. 1985. The continental crust: its composition and evolution, an examination of the geochemical record preserved in sedimentary rocks. Journal of Geology 94 (4), 632–33.Google Scholar
Tobia, F. H. & Aswad, K. J. 2014. Petrography and geochemistry of Jurassic sandstones, Western Desert, Iraq: implications on provenance and tectonic setting. Arabian Journal of Geosciences 8 (5), 2771–84.Google Scholar
Volkmer, J. E., Kapp, P., Guynn, J. H. & Lai, Q. 2007. Cretaceous–Tertiary structural evolution of the north central Lhasa terrane, Tibet. Tectonics 26 (6), TC6007.Google Scholar
Wang, C., Ding, L., Zhang, L. Y., Kapp, P., Pullen, A. & Yue, Y. H. 2016. Petrogenesis of Middle–Late triassic volcanic rocks from the gangdese belt, southern Lhasa terrane: implications for early subduction of Neo-tethyan oceanic lithosphere. Lithos 262, 320–33.Google Scholar
Wang, R., Richards, J. P., Hou, Z. Q. & Yang, Z. M. 2014a. Extent of underthrusting of the Indian plate beneath Tibet controlled the distribution of Miocene porphyry Cu–Mo ± Au deposits. Mineralium Deposita 49 (2), 165–73.Google Scholar
Wang, R., Richards, J. P., Hou, Z., Yang, Z. & Dufrane, S. A. 2014b. Increased magmatic water content–the key to Oligo-Miocene porphyry Cu-Mo ± Au formation in the eastern Gangdese Belt, Tibet. Economic Geology 109 (5), 1315–39.Google Scholar
Wen, D. R., Liu, D., Chung, S. L., Chu, M. F., Ji, J., Zhang, Q., Song, B., Lee, T. Y., Yeh, M. W. & Lo, C. H. 2008. Zircon SHRIMP U–Pb ages of the Gangdese Batholith and implications for Neotethyan subduction in southern Tibet. Chemical Geology 252 (3), 191201.Google Scholar
Wiedenbeck, M. A. P. C., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J. C. & Spiegel, W. 1995. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostandards Newsletter 19 (1), 123.Google Scholar
Winchester, J. A. & Max, M. D. 1989. Tectonic setting discrimination in clastic sequences: an example from late Proterozoic Erris Group, NW Ireland. Precambrian Research 45, 191201.Google Scholar
Yang, Z. M., Hou, Z. Q., Xia, D. X., Song, Y. C. & Li, Z. 2008. Relationship between Western Porphyry and mineralization in Qulong copper deposit of Tibet and enlightenment to further exploration. Mineral Deposits 27, 2836 (in Chinese with English abstract).Google Scholar
Yin, A. & Harrison, M. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences 28, 211–80.Google Scholar
Yin, Q., Lang, X. H., Cui, Z. W., Yang, Z. Y., Xie, F. W. & Wang, X. H. 2017. Geology and geochemistry constraints on the genesis of the No.2 porphyry copper-gold deposit in the Xiongcun district, Gangdese porphyry copper belt, Tibet, China. Applied Ecology and Environmental Research 15 (3), 477508.Google Scholar
Zhang, H. F., Xu, C. W., Guo, J. Q., Zong, K. Q., Cai, H. M. & Yuan, H. L. 2007. Indosinian orogenesis of the Gangdise terrane: evidences from zircon dating and petrogenesis of granitoids. Earth Science-Journal of China University of Geosciences 32 (2), 155–66 (in Chinese with English abstract).Google Scholar
Zhu, D. C., Pan, G. T., Chung, S. L., Liao, Z. L., Wang, L. Q. & Li, G. M. 2008. SHRIMP zircon age and geochemical constraints on the origin of Lower Jurassic volcanic rocks from the Yeba Formation, southern Gangdese, south Tibet. International Geology Review 50, 442–71.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Dilek, Y., Wang, L. Q. & Mo, X. X. 2011a. Lhasa terrane in southern Tibet came from Australia. Geology 39, 727–30.Google Scholar
Zhu, D. C., Zhao, Z. D., Niu, Y. L., Mo, X. X., Chung, S. L., Hou, Z. Q., Wang, L. Q. & Wu, F. Y. 2011b. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters 301, 241–55.Google Scholar
Zhu, D. C., Zhao, Z. D., Pan, G. T., Lee, Y. H., Kang, Z. Q., Liao, Z. L., Wang, L. Q., Li, G. M., Dong, G. C. & Liu, B. 2009. Early cretaceous subduction-related adakite-like rocks of the Gangdese Belt, southern Tibet: products of slab melting and subsequent melt-peridotite interaction? Journal of Asian Earth Sciences 34, 298309.Google Scholar
Supplementary material: File

Lang et al. supplementary material

Tables S1 and S2

Download Lang et al. supplementary material(File)
File 153.4 KB