Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-25T07:31:01.844Z Has data issue: false hasContentIssue false

Crustal growth and intracrustal recycling in the middle segment of the Trans-North China Orogen, North China Craton: a case study of the Fuping Complex

Published online by Cambridge University Press:  08 December 2011

BAO-FU HAN*
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
ZHAO XU
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
RONG REN
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
LIN-LIN LI
Affiliation:
Ministry of Education Key Laboratory of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
JIN-HUI YANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
YUE-HENG YANG
Affiliation:
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
*
Author for correspondence: [email protected]

Abstract

The most important crustal growth on Earth occurred at ~2.7 Ga, but the North China Craton (NCC) is characterized by prevalent development of ~2.5 Ga juvenile crust, with relatively rare records of ~2.7 Ga crustal growth. The Fuping Complex in the middle segment of the Trans-North China Orogen (TNCO) between the Eastern and Western blocks of the NCC is composed mainly of ~2.5 Ga Fuping tonalitic–trondhjemitic–granodioritic (TTG) gneisses and Longquanguan augen gneisses, ~2.1 Ga Nanying granitic gneisses and the Wanzi supracrustal rocks. Previous studies have suggested one major phase of crustal growth at ~2.5 Ga, possible intracrustal recycling at ~2.1 Ga and the presence of older rocks in the Fuping Complex, but there has been no record of ~2.7 Ga crustal growth. The Fuping TTG gneisses are dominated by stromatic migmatite, and new U–Pb dating of magmatic zircons from two stromatic migmatite samples yielded three different ages: (1) 2.75 Ga, which is the oldest age obtained from the Fuping TTG gneisses, (2) 2.54 Ga, which just falls in the published zircon U–Pb age range of 2.53 to 2.47 Ga for the Fuping TTG gneisses, and (3) 2.11 Ga, which is almost the same as the age of the Nanying granitic gneisses. Therefore, there are two generations of TTG gneisses in the Fuping Complex. Importantly, both of the 2.75 and 2.54 Ga zircons have the highest εHf(t) values, almost equal to the contemporaneous depleted mantle. This indicates high contributions of juvenile material to the two generations of TTG gneisses. In contrast, the 2.11 Ga zircons have apparently low εHf(t) values of −0.47 to +2.04, just falling in between 2.55 and 2.75 Ga continental crust values. This strongly suggests the reworking of the two generations of TTG gneisses at 2.1 Ga. Zircon U–Pb and Hf isotopes convincingly reveal two major phases of crustal growth in the Fuping Complex at ~2.7 and ~2.5 Ga, the same as in the northern and southern segments of the TNCO, and also confirm one major phase of intracrustal recycling at ~2.1 Ga, which may be responsible for the Nanying granitic gneisses.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amelin, Y., Lee, D. C. & Halliday, A. N. 2000. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochimica et Cosmochimica Acta 64, 4205–25.CrossRefGoogle Scholar
Amelin, Y., Lee, D. C., Halliday, A. N. & Pidgeon, R. T. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature 399, 252–5.CrossRefGoogle Scholar
Anderson, T. 2002. Correction of common lead in U-Pb analyses that do not report 204Pb. Chemical Geology 192, 5979.CrossRefGoogle Scholar
Andersson, J., Möller, C. & Johansson, L. 2002. Zircon geochronology of migmatite gneisses along the Mylonite Zone (S Sweden): a major Sveconorwegian terrane boundary in the Baltic Shield. Precambrian Research 114, 121–47.CrossRefGoogle Scholar
Bahlburg, H., Vervoort, J. D., Du Frane, S. A., Bock, B., Augustsson, C. & Reimann, C. 2009. Timing of crust formation and recycling in accretionary orogens: insights learned from the western margin of South America. Earth-Science Reviews 97, 215–41.CrossRefGoogle Scholar
Belousova, E. A., Kostitsyn, Y. A., Griffin, W. L., Begg, G. C., O'Reilly, S. Y. & Pearson, N. J. 2010. The growth of the continental crust: Constraints from zircon Hf-isotope data. Lithos 119, 457–66.CrossRefGoogle Scholar
Belousova, E. A., Reid, A. J., Griffin, W. L. & O'Reilly, S. Y. 2009. Rejuvenation vs. recycling of Archean crust in the Gawler Craton, South Australia: evidence from U–Pb and Hf isotopes in detrital zircon. Lithos 113, 570–82.CrossRefGoogle Scholar
Blichert-Toft, J. & Albarède, F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.CrossRefGoogle Scholar
Chen, B., Liu, S. W., Geng, Y. S. & Liu, C. Q. 2006. Zircon U-Pb ages, Hf isotopes and significance of the late Archean-Paleoproterozoic granitoids from the Wutai-Luliang terrain, North China. Acta Petrologica Sinica 22, 296304 (in Chinese with English abstract).Google Scholar
Condie, K. C. 1998. Episodic continental growth and supercontinents: a mantle avalanche connection? Earth and Planetary Science Letters 163, 97108.CrossRefGoogle Scholar
Condie, K. C., Beyer, E., Belousova, E., Griffin, W. L. & O'Reilly, S. Y. 2005. U–Pb isotopic ages and Hf isotopic composition of single zircons: the search for juvenile Precambrian continental crust. Precambrian Research 139, 42100.CrossRefGoogle Scholar
Corfu, F., Hanchar, J. M., Hoskin, P. W. O. & Kinny, P. 2003. Atlas of zircon textures. Reviews in Mineralogy and Geochemistry 53, 469500.CrossRefGoogle Scholar
Diwu, C. R., Sun, Y., Gao, A. L., Wang, H. L. & Liu, X. M. 2011. Crustal growth in the North China Craton at ~2.5 Ga: Evidence from in situ zircon U–Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex. Gondwana Research 20, 149–70.CrossRefGoogle Scholar
Diwu, C. R., Sun, Y., Lin, C. L. & Wang, H. L. 2010. LA-(MC)-ICPMS U-Pb zircon geochronology and Lu-Hf isotope compositions of the Taihua complex on the southern margin of the North China Craton. Chinese Science Bulletin 55, 2557–71.CrossRefGoogle Scholar
Diwu, C. R., Sun, Y., Yuan, H. L., Wang, H. L., Zhong, X. P. & Liu, X. M. 2008. U-Pb ages and Hf isotopes for detrital zircons from quartzite in the Paleoproterozoic Songshan Group on the southwestern margin of the North China Craton. Chinese Science Bulletin 53, 2828–39.CrossRefGoogle Scholar
Faure, M., Trap, P., Lin, W., Monie, P. & Bruguier, O. 2007. Polyorogenic evolution of the Paleoproterozoic Trans-North China Belt – New insights from the Lüliangshan-Hengshan-Wutaishan and Fuping massifs. Episodes 30, 96107.CrossRefGoogle Scholar
Griffin, W. L., Belousova, E. A., Shee, S. R., Pearson, N. J. & O'Reilly, S. Y. 2004. Archaean crustal evolution in the northern Yilgarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research 131, 231–82.CrossRefGoogle Scholar
Griffin, W. L., Pearson, N. J., Belousova, E., Jackson, S. E., Van Achterbergh, E., O'Reilly, S. Y. & Shee, S. R. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta 64, 133–47.CrossRefGoogle Scholar
Guan, H., Sun, M., Wilde, S. A., Zhou, X. H. & Zhai, M. G. 2002. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton. Precambrian Research 113, 118.CrossRefGoogle Scholar
Hawkesworth, C. J. & Kemp, A. I. S. 2006. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chemical Geology 226, 144–62.CrossRefGoogle Scholar
Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A. & Maruyama, S. 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology 33, 485–8.CrossRefGoogle Scholar
Jahn, B. M., Liu, D. Y., Wan, Y. S., Song, B. & Wu, J. S. 2008. Archean crustal evolution of the Jiaodong Peninsula, China, as revealed by zircon SHRIMP geochronology, elemental and Nd-isotope geochemistry. American Journal of Science 308, 232–69.CrossRefGoogle Scholar
Jiang, N., Guo, J. H., Zhai, M. G. & Zhang, S. Q. 2010. ~2.7 Ga crust growth in the North China craton. Precambrian Research 179, 3749.CrossRefGoogle Scholar
Kemp, A. I. S. & Hawkesworth, C. J. 2003. Granitic perspectives on the generation and secular evolution of the continental crust. In The Crust (ed. Rudnick, R. L.), pp. 349410. Treatise in Geochemistry vol. 3 (eds. Holland, H. D. & Turekian, K. K.), Oxford: Elsevier-Pergamon.Google Scholar
Kemp, A. I. S., Hawkesworth, C. J., Paterson, B. A. & Kinny, P. D. 2006. Episodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon. Nature 439, 580–3.CrossRefGoogle ScholarPubMed
Kinny, P. D. & Nutman, A. P. 1996. Zirconology of the Meeberrie gneiss, Yilgarn Craton, Western Australia: an early Archaean migmatite. Precambrian Research 78, 165–78.CrossRefGoogle Scholar
Kröner, A., Wilde, S. A., Li, J. H. & Wang, K. Y. 2005. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China. Journal of Asian Earth Sciences 24, 577–95.CrossRefGoogle Scholar
Kröner, A., Wilde, S. A., Zhao, G. C., O'Brien, P. J., Sun, M., Liu, D. Y., Wan, Y. S., Liu, S. W. & Guo, J. H. 2006. Zircon geochronology of mafic dykes in the Hengshan Complex of northern China: evidence for late Palaeoproterozoic rifting and subsequent high-pressure event in the North China Craton. Precambrian Research 146, 4567.CrossRefGoogle Scholar
Kusky, T. M. & Li, J. H. 2003. Paleoproterozoic tectonic evolution of the North China Craton. Journal of Asian Earth Sciences 22, 383–97.CrossRefGoogle Scholar
Li, J. H. & Kusky, T. 2007. A Late Archean foreland fold and thrust belt in the North China Craton: implications for early collisional tectonics. Gondwana Research 12, 4766.CrossRefGoogle Scholar
Li, J. H., Yang, C. H., Du, L. L., Wan, Y. S. & Liu, Z. X. 2005. SHRIMP zircon U-Pb geochronology evidence for the formation time of the Wanzi Group at Pingshan County, Hebei Province. Geological Review 51, 201–7 (in Chinese with English abstract).Google Scholar
Li, S. Z., Zhao, G. C., Wilde, S. A., Zhang, J., Sun, M., Zhang, G. W. & Dai, L. M. 2010. Deformation history of the Hengshan-Wutai-Fuping Complexes: implications for the evolution of the Trans-North China Orogen. Gondwana Research 18, 611–31.CrossRefGoogle Scholar
Liu, F., Guo, J. H., Lu, X. P. & Diwu, C. R. 2009. Crustal growth at ~2.5 Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopes in the Huai'an gneiss terrane. Chinese Science Bulletin 54, 4704–13.CrossRefGoogle Scholar
Liu, S. W., Liang, H. H., Zhao, G. C., Hua, Y. G. & Jian, A. H. 2000. Isotopic chronology and geological events of Precambrian Complex in Taihangshan region. Science in China – Series D 43, 386–93.CrossRefGoogle Scholar
Liu, S. W., Pan, Y. M., Li, J. H., Li, Q. G. & Zhang, J. 2002. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton. Precambrian Research 117, 4156.CrossRefGoogle Scholar
Liu, S. W., Pan, Y. M., Xie, Q. L., Zhang, J. & Li, Q. G. 2005. Geochemistry of the Paleoproterozoic Nanying granitoid gneisses: constraints on the tectonic setting of the Central Zone, North China Craton. Journal of Asian Earth Sciences 24, 643–58.CrossRefGoogle Scholar
Liu, D. Y., Wilde, S. A., Wan, Y. S., Wang, S. Y., Valley, J. W., Kito, N., Dong, C. Y., Xie, H. Q., Yang, C. X., Zhang, Y. X. & Guo, L. Z. 2009. Combined U–Pb, hafnium and oxygen isotope analysis of zircons from meta-igneous rocks in the southern North China Craton reveal multiple events in the Late Mesoarchean–Early Neoarchean. Chemical Geology 261, 140–54.CrossRefGoogle Scholar
Lu, S. N., Zhao, G. C., Wang, H. C. & Hao, G. J. 2008. Precambrian metamorphic basement and sedimentary cover of the North China Craton: a review. Precambrian Research 160, 7793.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication no. 4, 70 pp.Google Scholar
Machado, N. & Simonetti, A. 2001. U-Pb dating and Hf isotopic composition of zircons by laser ablation-MC-ICP-MS. In Short Course Handbook on Laser-Ablation-ICPMS in the Earth Sciences: Principles and Applications (ed. Sylvester, P.), pp. 121–46. Mineralogical Association of Canada no. 29.Google Scholar
Martin, H. 1994. Archean gray gneisses and the genesis of continental crust. In Archean Crustal Evolution (ed. Condie, K. C.), pp. 205–59. Amsterdam: Elsevier.CrossRefGoogle Scholar
Menzies, M., Xu, Y. G., Zhang, H. F. & Fan, W. M. 2007. Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96, 121.CrossRefGoogle Scholar
Nutman, P. A., Friend, C. R. L., Barker, S. L. L. & McGregor, V. R. 2004. Inventory and assessment of Palaeoarchaean gneiss terrains and detrital zircons in southern West Greenland. Precambrian Research 135, 281314.CrossRefGoogle Scholar
Nutman, P. A., Friend, C. R. L., Kinny, P. D. & McGregor, V. R. 1993. Anatomy of an Early Archean gneiss complex: 3900 to 3600 Ma crustal evolution in southern West Greenland. Geology 21, 415–18.2.3.CO;2>CrossRefGoogle Scholar
Polat, A., Kusky, T., Li, J. H., Fryer, B., Kerrich, R. & Patrick, K. 2005. Geochemistry of Neoarchean (ca. 2.55–2.50) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for geodynamic setting and continental growth. Geological Society of America Bulletin 117, 1387–99.CrossRefGoogle Scholar
Ren, L. D., Yang, C. H. & Du, L. L. 2009. Geochemical features and geological significance of the leucosomes in the quartzofeldspathic gneisses of Fuping Complex, Hebei, China. Geological Bulletin of China 28, 857–66 (in Chinese with English abstract).Google Scholar
Ren, R., Han, B. F., Zhang, Z. C., Li, J. F., Yang, Y. H. & Zhang, Y. B. 2011. Zircon U-Pb and Hf isotopic study of basement gneiss and overlying Meso-Neoproterozoic sedimentary rocks from the Changping area, Beijing, and their geological implications. Acta Petrologica Sinica 26, 1721–45 (in Chinese with English abstract).Google Scholar
Scherer, E. E., Whitehouse, M. J. & Münker, C. 2007. Zircon as a monitor of crustal growth. Elements 3, 1924.CrossRefGoogle Scholar
Soderlund, U., Patchett, P. J., Vervoort, J. D. & Isachsen, C. E. 2004. The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–24.CrossRefGoogle Scholar
Sun, M., Armstrong, R. L. & Lambert, R. J. 1992. Petrochemistry and Sr, Pb, and Nd isotopic geochemistry of Early Precambrian rocks, Wutaishan and Taihangshan areas, China. Precambrian Research 56, 131.CrossRefGoogle Scholar
Trap, P., Faure, M., Lin, W., Bruguier, O. & Monie, P. 2008. Contrasted tectonic styles for the Paleoproterozoic evolution of the North China Craton. Evidence for a ~2.1 Ga thermal and tectonic event in the Fuping Massif. Journal of Structural Geology 30, 1109–25.CrossRefGoogle Scholar
Wan, Y. S., Liu, D. Y., Wang, S. J., Yang, E. X., Wang, W., Dong, C. Y., Zhou, H. Y., Du, L. L., Yang, Y. H. & Diwu, C. R. 2011. ~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province): further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon. Precambrian Research 186, 169–80.CrossRefGoogle Scholar
Wang, Z. H. 2009. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen. Precambrian Research 170, 7387.CrossRefGoogle Scholar
Wang, W., Liu, S. W., Bai, X., Yang, P. T., Li, Q. G. & Zhang, L. F. 2011. Geochemistry and zircon U–Pb–Hf isotopic systematics of the Neoarchean Yixian–Fuxin greenstone belt, northern margin of the North China Craton: implications for petrogenesis and tectonic setting. Gondwana Research 20, 6481.CrossRefGoogle Scholar
Wilde, S. A., Cawood, P. & Wang, K. Y. 1997. The relationship and timing of granitoid evolution with respect to felsic volcanism in the Wutai Complex, North China Craton. Proceedings of the 30th IGC: Precambrian Geology and Metamorphic Petrology 17, 7588.Google Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y. & Nemchin, A. 1998. SHRIMP U–Pb zircon dating of granites and gneisses in the Taihangshan–Wutaishan area: implications for the timing of crustal growth in the North China Craton. Chinese Science Bulletin 43, 144–5.CrossRefGoogle Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y. & Nemchin, A. A. 2005. Granitoid evolution in the late Archean Wutai Complex: North China Craton. Journal of Asian Earth Sciences 24, 597613.CrossRefGoogle Scholar
Wilde, S. A., Cawood, P. A., Wang, K. Y., Nemchin, A. & Zhao, G. C. 2004. Determining Precambrian crustal evolution in China: a case-study from Wutaishan, Shanxi Province, demonstrating the application of precise SHRIMP U-Pb geochronology. In Aspects of the Tectonic Evolution of China (eds Malps, J., Fletcher, C. J. N., Ali, J. R. & Aichison, J. C.), pp. 526. Geological Society of London, Special Publication no. 226.Google Scholar
Wilde, S. A., Zhao, G. C. & Sun, M. 2002. Development of the North China Craton during the Late Archaean and its amalgamation along a major 1.8 Ga collision zone: including speculations on its position within a global Palaeoproterozoic supercontinent. Gondwana Research 5, 8594.CrossRefGoogle Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chemical Geology 234, 105–26.CrossRefGoogle Scholar
Wu, F. Y., Zhao, G. C., Wilde, S. A. & Sun, D. Y. 2005. Nd isotopic constraints on crustal formation in the North China Craton. Journal of Asian Earth Sciences 24, 523–45.CrossRefGoogle Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y. & Xie, L. W. 2006 a. U–Pb and Hf isotopic study of detrital zircons from the Lüliang khondalite, North China Craton, and their tectonic implications. Geological Magazine 146, 701–16.CrossRefGoogle Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J. & He, Y. H. 2008. Paleoproterozoic crustal growth in the Western Block of the North China Craton: evidence from detrital zircon Hf and whole rock Sr-Nd isotopic compositions of the Khondalites from the Jining Complex. American Journal of Science 308, 304–27.CrossRefGoogle Scholar
Xia, X. P., Sun, M., Zhao, G. C., Wu, F. Y., Xu, P., Zhang, J., He, Y. H. & Zhang, J. H. 2006 b. U-Pb age and Hf isotope study of detrital zircons from the Wanzi supracrustals: constraints on the tectonic setting and evolution of the Fuping Complex, Trans-North China Orogen. Acta Geologica Sinica – English Edition 80, 844–63.CrossRefGoogle Scholar
Xie, L. W., Zhang, Y. B., Zhang, H. H., Sun, J. F. & Wu, F. Y. 2008. In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite. China Science Bulletin 53, 1565–73.CrossRefGoogle Scholar
Yang, C. H., Du, L. L., Wan, Y. S. & Liu, Z. X. 2004. SHRIMP zircon U-Pb chronology of tonalitic gneiss in Banqiaogou area, Pingshan County, Hebei Province. Geological Journal of China Universities 10, 514–22 (in Chinese with English abstract).Google Scholar
Yang, J., Gao, S., Chen, C., Tang, Y. Y., Yuan, H. L., Gong, H. J., Xie, S. W. & Wang, J. Q. 2009. Episodic crustal growth of North China as revealed by U-Pb age and Hf isotopes of detrital zircons from modern rivers. Geochimica et Cosmochimica Acta 73, 2660–73.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Shao, J. A., Wilde, S. A., Xie, L. W. & Liu, X. M. 2006. Constraints on the timing of uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters 246, 336–52.CrossRefGoogle Scholar
Yang, J. H., Wu, F. Y., Wilde, S. A. & Zhao, G. C. 2008. Petrogenesis and geodynamics of Late Archean magmatism in eastern Hebei, eastern North China Craton: geochronological, geochemical and Nd-Hf isotopic evidence. Precambrian Research 167, 125–49.CrossRefGoogle Scholar
Zeh, A., Gerdes, A., Barton, J. Jr. & Klemde, R. 2010. U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa): constraints for the formation, recycling and metamorphism of Palaeoarchaean crust. Precambrian Research 179, 5068.CrossRefGoogle Scholar
Zhai, M. G. 2004. Precambrian tectonic evolution of the North China Craton. In Aspects of the Tectonic Evolution of China (eds Malps, J., Fletcher, C. J. N., Ali, J. R. & Aichison, J. C.), pp. 5772. Geological Society of London, Special Publication no. 226.Google Scholar
Zhai, M. G., Bian, A. G. & Zhao, T. P. 2000. The amalgamation of the supercontinent of North China craton at the end of the Neoarchean and its break up during late Proterozoic and Mesoproterozoic. Science in China – Series D 43, 219–32.CrossRefGoogle Scholar
Zhai, M. G. & Santosh, M. 2011. The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondwana Research 20, 625.CrossRefGoogle Scholar
Zhang, Z. Q., Wu, J. S. & Ye, X. J. 1991. REE, Rb–Sr and Sm–Nd ages of Archean metamorphic rocks in lower part of Fuping group and their significance. Geochimica 2, 118–26.Google Scholar
Zhang, J., Zhao, G. C., Li, S. Z., Sun, M., Liu, S. W., Wilde, S. A., Kröner, A. & Yin, C. Q. 2007. Deformation history of the Hengshan Complex: implications for the tectonic evolution of the Trans-North China Orogen. Journal of Structural Geology 29, 933–49.CrossRefGoogle Scholar
Zhang, J., Zhao, G. C., Li, S. Z., Sun, M., Wilde, S. A., Liu, S. W. & Yin, C. P. 2009. Polyphase deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb zircon ages and tectonic implications. Journal of Structural Geology 31, 177–93.CrossRefGoogle Scholar
Zhang, J. J., Zhao, L. & Liu, S. W. 2006. Structures of syn-deformational granites in the Longquanguan shear zone and their monazite electronic microprobe dating. Acta Geologica Sinica – English Edition 80, 864–74.Google Scholar
Zhang, J., Zhao, G. C., Sun, M., Wilde, S. A., Li, S. Z. & Liu, S. W. 2006. High-pressure mafic granulites in the Trans-North China Orogen: tectonic significance and age. Gondwana Research 9, 349–62.CrossRefGoogle Scholar
Zhao, G. C. 2007. When did plate tectonics begin on the North China Craton? Insights from Metamorphism. Earth Science Frontiers 14, 1932.CrossRefGoogle Scholar
Zhao, R. F., Guo, J. H., Peng, P. & Liu, F. 2011. 2.1 Ga crustal remelting event in Hengshan Complex: evidence from zircon U-Pb and Hf-Nd isotopic study on potassic granites. Acta Petrologica Sinica 27, 1607–23 (in Chinese with English abstract).Google Scholar
Zhao, G. C. & Kröner, A. 2007. Geochemistry of Neoarchean (ca. 2.55–2.50 Ga) volcanic and ophiolitic rocks in the Wutaishan greenstone belt, central orogenic belt, North China craton: implications for geodynamic setting and continental growth: discussion. Geological Society of America Bulletin 119, 487–9.CrossRefGoogle Scholar
Zhao, G. C., Kröner, A., Wilde, S. A., Sun, M., Li, S. Z., Li, X. P., Zhang, J., Xia, X. P. & He, Y. H. 2007. Lithotectonic elements and geological events in the Hengshan–Wutai–Fuping belt: a synthesis and implications for the evolution of the Trans-North China Orogen. Geological Magazine 144, 753–75.CrossRefGoogle Scholar
Zhao, G. C., Sun, M., Wilde, S. A. & Li, S. Z. 2005. Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Research 136, 177202.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 1998. Thermal evolution of the Archaean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. International Geology Review 40, 706–21.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Lu, L. Z. 2000. Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China Craton. Journal of Metamorphic Geology 18, 375–91.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Cawood, P. A. & Sun, M. 2002. SHRIMP U-Pb zircon ages of the Fuping Complex: implications for accretion and assembly of the North China Craton. American Journal of Science 302, 191226.CrossRefGoogle Scholar
Zhao, G. C., Wilde, S. A., Guo, J. H., Cawood, P. A., Sun, M. & Li, X. P. 2010. Single zircon grains record two Paleoproterozoic collisional events in the North China Craton. Precambrian Research 177, 266–76.CrossRefGoogle Scholar