Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T05:21:42.222Z Has data issue: false hasContentIssue false

Continuity of the North Qilian and North Altun orogenic belts of NW China: evidence from newly discovered Palaeozoic low-Mg and high-Mg adakitic rocks

Published online by Cambridge University Press:  27 July 2017

SHENG-YAO YU*
Affiliation:
Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geology, Ocean University of China, Qingdao 266100, China Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China College of Earth Sciences, Jilin University, Changchun 130061, China
JIAN-XIN ZHANG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
SAN-ZHONG LI
Affiliation:
Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geology, Ocean University of China, Qingdao 266100, China Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
DE-YOU SUN
Affiliation:
College of Earth Sciences, Jilin University, Changchun 130061, China
YIN-BIAO PENG
Affiliation:
Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
XI-LIN ZHAO
Affiliation:
Nanjing Centre, China Geological Survey, Nanjing 210016, China
*
Author for correspondence: [email protected]

Abstract

In this study, the petrology, zircon U–Pb ages, Lu–Hf isotopic compositions, whole-rock geochemistry and Sr–Nd isotopes for newly recognized low-Mg and high-Mg adakitic rocks from the North Altun orogenic belt were determined. The results will provide important insights for understanding the continuities of the North Qilian and North Altun orogenic belts during early Palaeozoic time. The low-Mg adakitic granitoids (445 to 439 Ma) are characterized by high SiO2 (69–70 wt %), low Mg no. (43–48) and low Cr and Ni contents. In contrast, the high-Mg adakitic granitoids (425 to 422 Ma) have relatively lower SiO2 (65–67 wt %), higher Mg no. (60–62) and higher Cr and Ni contents. The low-Mg adakitic rocks have high initial 87Sr/86Sr ratios (0.7073–0.7084), negative εNd(t) (−1.9 to −4.0) and εHf(t) values (−6.8 to −2.0), and old zircon Hf model ages (1.4–1.7 Ga). In contrast, the high-Mg adakitic rocks show lower initial 87Sr/86Sr ratios (0.7044–0.7057), higher εNd(t) (−0.7 to 3.1) and positive εHf(t) values (2.0 to 6.9), with younger zircon Hf model ages (0.9–1.2 Ga). These results suggest that the low-Mg adakitic rocks were probably generated by the partial melting of thickened crust, whereas the high-Mg adakitic rocks were derived from the anatexis of delaminated lower crust, which subsequently interacted with mantle magma upon ascent. The data obtained in this study provide significant information about the geological and tectonic processes after the closure of the Altun Ocean. The continent–continent collision and thickening probably occurred during 450–440 Ma with the formation of low-Mg adakitic rocks, and the transition of the tectonic regime from compression to extension probably occurred at 425–422 Ma with the formation of high-Mg adakitic rocks. The geochemical, geochronological and petrogenetic similarities between the North Altun and North Qilian adakitic rocks suggest that these two orogenic belts were subjected to similar tectonomagmatic processes during early Palaeozoic times.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allegre, C. J. & Minster, J. F. 1978. Quantitative method of trace element behavior in magmatic processes. Earth and Planetary Science Letters 38, 125.Google Scholar
Atherton, M. P. & Petford, N. 1993. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature 362, 144–6.Google Scholar
Barker, F. 1979. Trondhjemites, Dacites and Related Rocks. Amsterdam: Elsevier.Google Scholar
Blichert-Toft, J. & Albarede, F. 1997. The Lu–Hf geochemistry of chondrites and the evolution of the mantle–crust system. Earth and Planetary Science Letters 148, 243–58.Google Scholar
Bureau of Geology and Mineral Resources of Xinjiang Uygur Autonomous Region (BGMX). 1993. Regional Geology of Xinjiang Uygur Autonomous Region, pp. 315–8. Beijing: Geological Publishing House (in Chinese with English abstract).Google Scholar
Castillo, P. R. 2012. Adakite petrogenesis. Lithos 134–135, 304–16.Google Scholar
Castillo, P. R., Janney, P. E. & Solidum, R. U. 1999. Petrology and geochemistry of Camiguin island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology 134, 3351.Google Scholar
Chen, Y. X., Xia, X. H. & Song, S. G. 2013. Petrogenesis of Aoyougou high-silica adakite in the North Qilian orogen: evidence for decompression melting of oceanic slab. Chinese Science Bulletin 57, 2072–85.Google Scholar
Chu, N. C., Taylor, R. N. & Chavagnac, V. 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atom Spectrometry 17, 1567–74.Google Scholar
Chung, S. L., Liu, D. Y., Ji, J. Q., Chu, M. F., Lee, H. Y., Wen, D. J., Lo, C. H., Lee, T. Y., Qian, Q. & Zhang, Q. 2003. Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31, 1021–4.Google Scholar
Condie, K. C. 2005. TTGs and adakites: are they both slab melts? Lithos 80, 3344.Google Scholar
Defant, M. J. & Drummond, M. S. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662–5.Google Scholar
Defant, M. J., Xu, J. F., Kepezhinskas, P., Wang, Q., Zhang, Q. & Xiao, L. 2002. Adakites: some variations on a theme. Acta Petrologica Sinica 18, 129– 42.Google Scholar
Drummond, M. S., Defant, M. J. & Kepezhinskas, P. K. 1996. The petrogenesis of slab derived trondhjemite– tonalite–dacite/adakite magmas. Transactions of the Royal Society of Edinburgh: Earth Sciences 87, 205–16.Google Scholar
Elhlou, S., Belousova, E. & Griffin, W. L. 2006. Trace element and isotopic composition of GJ-red zircon standard by laser ablation. Geochimica et Cosmochimica Acta 70 (Suppl.), A158.Google Scholar
Gao, S., Rudnick, R. L., Xu, W. L., Yuan, H. L., Liu, Y. S., Walker, R. J., Puchtel, I., Liu, X., Huang, H., Wang, X. R. & Yang, J. 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth and Planetary Science Letters 270, 4153.Google Scholar
Gao, S., Rudnick, R. L., Yuan, H., Liu, X., Liu, Y., Xu, W., Ling, W., Ayers, J., Wang, X. & Wang, Q. 2004. Recycling lower continental crust in the North China Craton. Nature 432, 892–7.Google Scholar
Gehrels, G. E. & Yin, A. 2003. Magmatic history of the northeastern Tibetan Plateau. Journal of Geophysical Research 108 (B9), 2423Google Scholar
Goss, A. R. & Kay, S. M. 2009. Extreme high field strength element (HFSE) depletion and near-chondritic Nb/Ta ratios in Central Andean adakite-like lavas (28° S, 68° W). Earth and Planetary Science Letters 279, 97109.Google Scholar
Guo, F., Nakamuru, E., Fan, W., Kobayoshi, K. & Li, C. 2007. Generation of Palaeocene adakitic andesites by magma mixing; Yanji Area, NE China. Journal of Petrology 48, 661–92.Google Scholar
Hao, J., Wang, E. Q., Liu, X. H. & Sang, H. Q. 2006. Jinyanshan collisional orogenic belt of the early Paleozoic in the Altun mountains: evidence from single zircon U–Pb and 40Ar/39Ar isotopic dating for the arc magmatite and ophiolitic mélange. Acta Petrologica Sinica 22, 2743–52 (in Chinese with English abstract).Google Scholar
Hastie, A., Kerr, A., McDonald, I., Mitchell, S. F., Pearce, J. A., Millar, I. L., Barfod, D. & Mark, D. F. 2010. Geochronology, geochemistry and petrogenesis of rhyodacite lavas in eastern Jamaica: a new adakite subgroup analogous to early Archaean continental crust? Chemical Geology 276, 344–59.Google Scholar
Hou, K. J., Li, Y. H. & Tian, Y. Y. 2009. In situ U–Pb zircon dating using laser ablation-multi ion counting-ICP-MS. Mineral Deposit 28, 481–92 (in Chinese with English abstract).Google Scholar
Hou, K. J., Li, Y. H., Zou, T. R., Qu, X. M., Shi, Y. R. & Xie, G. Q. 2007. Laser ablation–MC-ICP-MS technique for Hf isotope microanalysis of zircon and its geological applications. Acta Petrologica Sinica 23, 2595–604 (in Chinese with English abstract).Google Scholar
Huang, F., Li, S., Dong, F., He, Y. & Chen, F. 2008. High-Mg adakitic rocks in the Dabie orogen, central China: implications for foundering mechanism of lower continental crust. Chemical Geology 255, 113.Google Scholar
Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. & Wijbrans, J. 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: implications for crustal thickening to delamination. Lithos 114, 109–20.Google Scholar
Kay, R. W. 1978. Aleutian magnesian andesites: melts from subducted Pacific ocean crust. Journal of Volcanology and Geothermal Research 4, 117–32.Google Scholar
Li, X. H., Li, W. X., Li, Z. X., Lo, C. H., Wang, J., Ye, M. F. & Yang, Y. H. 2009. Amalgamation between the Yangtze and Cathaysia blocks in South China: constraints from SHRIMP U–Pb zircon ages, geochemistry and Nd–Hf isotopes of the Shuangxiwu volcanic rocks. Precambrian Research 174, 117–28.Google Scholar
Li, S. Z., Zhao, S. J., Li, X. Y., Cao, H. H., Liu, X., Guo, X. Y., Xiao, W. J., Lai, S. C., Yan, Z., Li, Z. H. & Yu, S. Y. 2016a. Proto-Tethys Ocean in East Asia (I) Northern and southern border faults and subduction polarity. Acta Petrologica Sinica 32 (9), 2607–27 (in Chinese with English abstract).Google Scholar
Li, S. Z., Zhao, S. J., Yu, S., Cao, H. H., Li, X. Y., Liu, X., Guo, X. Y., Xiao, W. J., Lai, S. C., Yan, Z., Li, Z. H., Yu, S. Y. & Zhang, J. 2016b. Proto-Tethys Ocean in East Asia (I) Northern and southern border faults and subduction polarity. Acta Petrologica Sinica A 32 (9), 2628–44 (in Chinese with English abstract).Google Scholar
Ling, W. L., Duan, R. C., Xie, X. J., Zhang, Y. Q., Zhang, J. B., Cheng, J. P., Liu, X. M. & Yang, H. M. 2009. Contrasting geochemistry of the Cretaceous volcanic suites in Shandong province and its implications for the Mesozoic lower crust delamination in the eastern North China craton. Lithos 113, 640–58.Google Scholar
Liu, Y. S., Gao, S., Hu, Z. C., Gao, C. G., Zong, K. Q. & Wang, D. B. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U–Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology 51, 537–71.Google Scholar
Liu, L., Wang, C., Cao, Y. T., Chen, D. L., Kang, L., Yang, W. Q. & Zhu, X. H. 2012. Geochronology of multi-stage metamorphic events: constraints on episodic zircon growth from the UHP eclogite in the South Altun, NW China. Lithos 136–139, 1026.Google Scholar
Liu, L., Wang, C., Chen, D. L., Zhang, A. D. & Liou, J. G. 2009. Petrology and geochronology of HP-UHP rocks from the South Altun Tagh, northwestern China. Journal of Asian Earth Sciences 35, 232–44.Google Scholar
Liu, H., Wang, G. C., Yang, Z. J., Luo, Y. J., Gao, R. & Huang, W. X. 2013. Geochronology and geochemistry of the Qiashikansayi Basalt and its constraint on the closure progress of the North Altun ocean. Acta Geologica Sinica 87, 3854.Google Scholar
Liu, C. H., Wu, C. L., Gao, Y. H., Lei, M. & Qin, H. P. 2016. Age, composition, and tectonic significance of Palaeozoic granites in the Altun orogenic belt, China. International Geology Review 58, 131–54.Google Scholar
Lizuka, T. & Hirata, T. 2005. Improvements of precision and accuracy in in-situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICP MS technique. Chemical Geology 220, 121–37.Google Scholar
Macpherson, C. G., Dreher, S. T. & Thirwall, M. F. 2006. Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243, 581–93.Google Scholar
Martin, H. 1999. Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46, 411–29.Google Scholar
Martin, H., Smithies, R. H., Rapp, R. P., Moyen, J. F. & Champion, D. C. 2005. An overview of adakite, tonalite–trondhjemite–granodiorite (TTG) and sanukitoid: relationships and some implications for crustal evolution. Lithos 79, 124.Google Scholar
Moyen, J. F. 2009. High Sr/Y and La/Yb ratios: the meaning of the “adakitic signature”. Lithos 112, 556–74.Google Scholar
Peacock, S. M., Rushmer, T. & Thompson, A. B. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters 121, 227–44.Google Scholar
Petford, N. & Atherton, M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. Journal of Petrology 37, 1491–521.Google Scholar
Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. C. 2001. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197200.Google Scholar
Qi, X. X., Wu, C. L. & Li, H. B. 2005. SHRIMP U–Pb age of zircons from Kazisayi granite in the northern Altun Tagh mountains and its significations. Acta Petrologica Sinica 21, 859–66 (in Chinese with English abstract).Google Scholar
Qin, H. P. 2012. Petrology of early Paleozoic granites and their relation to tectonic evolution of orogen in the North Qilian Orogenic belt. Ph.D. thesis, Chinese Academy of Geological Sciences, Beijing, pp. 1–116 (in Chinese with English abstract). Published thesis.Google Scholar
Rapp, R. P., Shimizu, N., Norman, M. D. & Applegate, G. S. 1999. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chemical Geology 160, 335–56.Google Scholar
Rapp, R. P., Watson, E. B. & Miller, C. F. 1991. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalities. Precambrian Research 51, 125.Google Scholar
Rapp, R., Xiao, L. & Shimizu, N. 2002. Experimental constraints on the origin of potassium-rich adakites in eastern China. Acta Petrologica Sinica 18, 293302.Google Scholar
Richards, J. P. & Kerrich, R. 2007. Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Economic Geology 102, 537–76.Google Scholar
Rudnick, R. L. & Fountain, D. M. 1995. Nature and composition of the continental crust: a lower crustal perspective. Reviews of Geophysics 33, 267309.Google Scholar
Scherer, E., Munker, C. & Mezger, K. 2001. Calibration of the lutetium–hafnium clock. Science 293, 683–7.Google Scholar
Şen, C. & Dunn, T. 1994. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites. Contributions to Mineralogy and Petrology 117, 394409.Google Scholar
Shimoda, G., Tatsumi, Y., Nohda, S., Ishizaka, K. & Jahn, B. M. 1998. Setouchi high-Mg andesites revisited: geochemical evidence for melting of subducting sediments. Earth and Planetary Science Letters 160, 479–92.Google Scholar
Sláma, J., Kosler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., Horstwood, M. S. A., Morris, G. A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M. N. & Whitehouse, M. J. 2008. Plesovice zircon – a new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 135.Google Scholar
Song, S. G., Niu, Y. L., Su, L. & Xia, X. H. 2013. Tectonics of the North Qilian orogen, NW China. Gondwana Research 23, 1378–411.Google Scholar
Song, S. G., Zhang, L. F., Niu, Y. L., Wei, C. J., Liou, J. G. & Shu, G. M. 2007. Eclogite and carpholite-bearing meta-pelite in the North Qilian suture zone, NW China: implications for Paleozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology 25, 547–63.Google Scholar
Springer, W. & Seck, H. A. 1997. Partial fusion of basic granulite at 5 to 15 kbar: implications for the origin of TTG magmas. Contributions to Mineralogy and Petrology 127, 3045.Google Scholar
Stern, R. A. & Hanson, G. N. 1991. Archaean high-Mg granodiorite: a derivative of light rare earth enriched monzodiorite of mantle origin. Journal of Petrology 32, 201–38.Google Scholar
Stern, C. R. & Kilian, R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology 123, 263–81.Google Scholar
Streck, M. J., Leeman, W. P. & Chesley, J. 2007. High-Mg andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35, 351–4.Google Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes. In Magmatism in Ocean Basins (ed. Saunders, A. D.), pp. 313–45. Geological Society of London, Special Publication no. 42.Google Scholar
Tang, G. J., Wang, Q., Wyman, D. A., Li, Z. X., Zhao, Z. H., Jia, X. H. & Jiang, Z. Q. 2010. Ridge subduction and crustal growth in the central Asian Orogenic Belt: evidence from Late Carboniferous adakites and high-Mg diorites in the western Junggar region, northern Xinjiang. Chemical Geology 277, 281300.Google Scholar
Tatsumi, Y., Suzuki, T., Kawabata, H., Sato, K., Miyazaki, T., Chang, Q., Takahashi, T., Tani, K., Shibata, T. & Yoshikawa, M. 2006. The petrology and geochemistry of Oto-Zan composite lava flow on Shodo-Shima Island, SW Japan: remelting of a solidified high-Mg andesite magma. Journal of Petrology 47, 595629.Google Scholar
Tseng, C. Y., Yang, H. J., Yang, H. Y., Liu, D. Y., Wu, C. L., Cheng, C. K., Chen, C. H. & Ker, C. M. 2009. Continuity of the North Qilian and North Qinling orogenic belts, Central Orogenic System of China: evidence from newly discovered Paleozoic adakitic rocks. Gondwana Research 16, 285–93.Google Scholar
Wan, Y. S., Xu, Z. Q., Yang, J. S. & Zhang, J. X. 2001. Ages and compositions of the Precambrian high-grade basement of the Qilian Terrane and its adjacent areas. Acta Geologica Sinica 75, 375–84.Google Scholar
Wang, J. R., Guo, Y. S., Fu, S. M., Chen, J. L., Qin, X. F., Zhang, H. P. & Yang, Y. J. 2005. Early Paleozoic adakite rocks in Heishishan, Gansu and their significance for tectonodynamics. Acta Petrologica Sinica 21, 977–85 (in Chinese with English abstract).Google Scholar
Wang, C., Li, R. S., Smithies, R. H., Li, M., Peng, Y., Chen, F. N. & He, S. P. 2017. Early Paleozoic felsic magmatic evolution of the western Central Qilian belt, Northwestern China, and constraints on convergent margin processes. Gondwana Research 41, 301–24.Google Scholar
Wang, C., Liu, L., Yang, W. Q., Zhu, X. H., Cao, Y. T., Kang, L., Chen, S. F., Li, R. S. & He, S. P. 2013. Provenance and ages of the Altun Complex in Altun Tagh: implications for the early Neoproterozoic evolution of northwestern China. Precambrian Research 230, 193208.Google Scholar
Wang, Q., McDermott, F., Xu, J. F., Bellon, H. & Zhu, Y. T. 2005. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33, 465–8.Google Scholar
Wang, C., Wang, Y. H., Liu, L., He, S. P., Li, R. S., Li, M., Yang, W. Q., Cao, Y. T., Meert, J., Shi, C. & Yu, H. Y. 2014. The Palaeoproterozoic magmatic-metamorphic events and cover sediments of the Tiekelik Belt along the southwestern margin of the Tarim Craton, northwestern China. Precambrian Research 254, 210–25.Google Scholar
Wang, J. R., Wu, C. J., Cai, Z. H., Guo, Y. S., Wu, J. C. & Liu, X. H. 2006. Early Paleozoic high-Mg adakite from Yintongliang in the eastern section of the North Qilian: implications for geodynamics and Cu-Au mineralization. Acta Petrologica Sinica 22, 2655–64 (in Chinese with English abstract).Google Scholar
Wang, J. R., Wu, J. C. & Jia, Z. L. 2008. Sujiashan high-Mg adakite in the eastern section of North Qilian Mountains: implications for geodynamics. Journal of Lanzhou University 44, 1627 (in Chinese with English abstract).Google Scholar
Wang, Q., Wyman, D. A., Xu, J. F., Jian, P., Zhao, Z. H., Li, C., Xu, W., Ma, J. L. & He, B. 2007. Early Cretaceous adakitic granites in the Northern Dabie Complex, central China: implications for partial melting and delamination of thickened lower crust. Geochimica et Cosmochimica Acta 71, 2609–36.Google Scholar
Wang, Q., Xu, J., Jian, P., Bao, Z., Zhao, Z., Li, C., Xiong, X. & Ma, J. 2006. Petrogenesis of adakitic porphyries in an extensional tectonic setting, Dexing, south China: implications for the genesis of porphyry copper mineralization. Journal of Petrology 47, 119–44.Google Scholar
Wedepohl, K. H. 1995. The compositions of the continental crust. Geochimica et Cosmochimica Acta 59, 1217–32.Google Scholar
Wen, D. R., Chung, S. L., Song, B., Iizuka, Y., Yang, H. J., Ji, J., Liu, D. & Gallet, S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: petrogenesis and tectonic implications. Lithos 105, 111.Google Scholar
Whitney, D. L. & Evans, B. W. 2010. Abbreviations for names of rock-forming minerals. American Mineralogist 95, 185–7.Google Scholar
Wu, C. L., Gao, Y. H., Frost, R., Robinson, P. T., Wooden, J. L., Wu, S. P., Chen, Q. L. & Lei, M. 2009a. An Early Paleozoic double-subduction model for the North Qilian oceanic plate: evidence from zircon SHRIMP dating of granites. International Geology Review 53, 157–81.Google Scholar
Wu, C. L., Xu, X. Y., Gao, Q. M., Li, X. M., Lei, M., Gao, Y. H., Frost, R. B. & Wooden, J. L. 2010. Early Palaeozoic granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrologica Sinica 26, 1027–44 (in Chinese with English abstract).Google Scholar
Wu, C. L., Yang, J. S., Robinson, P. T., Wooden, J. L., Mazdab, F. K., Gao, Y. H., Wu, S. P. & Chen, Q. L. 2009b. Geochemistry, age and tectonic significance of granitic rocks in north Altun, northwest China. Lithos 113, 423–36.Google Scholar
Wu, F. Y., Yang, Y. H., Xie, L. W., Yang, J. H. & Xu, P. 2006a. Hf isotopic compositions of the standard zircons and baddeleyites used in U–Pb geochronology. Chemical Geology 234, 105–26.Google Scholar
Wu, C. L., Yang, J. S., Yang, H. Y., Wooden, J. L., Shi, R. D., Chen, S. Y. & Zheng, Q. G. 2004. Two types of I-type granite dating and geological significance from North Qilian, NW China. Acta Petrologica Sinica 20, 425–32 (in Chinese with English abstract).Google Scholar
Wu, C. L., Yao, S. Z. & Zeng, L. S. 2006. Double subduction of the Early Paleozoic North Qilian oceanic plate: evidence from granites in the central segment of North Qilian, NW China. Geology in China 33, 1197–208 (in Chinese with English abstract).Google Scholar
Wu, C. L., Yao, S. Z., Zeng, L. S., Yang, J. S., Wooden, J. L., Chen, S. Y. & Mazdab, F. K. 2006b. Bashikaogong-Shimierbulake granitic complex, north Altun, NW China: geochemistry and zircon SHRIMP ages. Science in China Series D: Earth Sciences 49, 1233–51.Google Scholar
Wu, C. L., Yao, S. Z., Zeng, L. S., Yang, J. S., Wooden, J. L., Chen, S. Y. & Mazadab, F. K. 2007. Characteristic of the granitoid complex and its zircon SHRIMP dating at the south margin of the Bashikaogong Basin-Simierbulake, North Altun. Science in China (D) 37, 1026.Google Scholar
Xiao, W. J., Windley, B. F., Yong, Y., Yan, Z., Yuan, C., Liu, C. Z. & Li, J. L. 2009. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. Journal of Asian Earth Sciences 35, 323–33.Google Scholar
Xiong, Z. L., Zhang, H. F. & Zhang, J. 2012. Petrogenesis and tectonic implications of the Maozangsi and Huangyanghe granitic intrusions in Lenglongling area, the eastern part of North Qilian Mountains. NW China. Earth Science Frontiers 19, 214–27.Google Scholar
Xu, J., Castillo, P. R., Li, X., Yu, X., Zhang, B. & Han, Y. 2002. MORB-type rocks from the Paleo-Tethyan Mian-Lueyang northern ophiolite in the Qinling Mountains, central China: implications for the source of the low 206Pb/204Pb and high 143Nd/144Nd mantle component in the Indian Ocean. Earth and Planetary Science Letters 198, 323–37.Google Scholar
Xu, W., Hergt, J. M., Gao, S., Pei, F., Wang, W. & Yang, D. 2008. Interaction of adakitic melt-peridotite: implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth and Planetary Science Letters 265, 123–37.Google Scholar
Xu, H., Ma, C. & Zhang, J. 2012. Generation of Early Cretaceous high-Mg adakitic host and enclaves by magma mixing, Dabie orogen, Eastern China. Lithos 142–143, 182200.Google Scholar
Xu, H., Ma, C., Zhang, J. F. & Ye, K. 2012. Early Cretaceous low-Mg adakitic granites from the Dabie orogen, eastern China: petrogenesis and implications for destruction of the over-thickened lower continental crust. Gondwana Research 23, 190207.Google Scholar
Xu, Z. Q., Yang, J. S., Zhang, J. X., Jiang, M., Li, H. B. & Cui, J. W. 1999. A comparison between the tectonic units on the two sides of the Altun sinistral strike-slip fault and the mechanism of lithospheric shearing. Acta Geologica Sinica 73, 193205 (in Chinese with English abstract).Google Scholar
Xu, W. C., Zhang, H. F., Guo, L. & Yuan, H. L. 2010. Miocene high Sr/Y magmatism, south Tibet: product of partial melting of subducted Indian continental crust and its tectonic implication. Lithos 114, 293306.Google Scholar
Yan, Z., Xiao, W. J., Windley, B. F., Wang, Z. Q. & Li, J. L. 2010. Silurian clastic sediments in the North Qilian Shan, NW China: chemical and isotopic constraints on their forearc provenance with implications for the Paleozoic evolution of the Tibetan Plateau. Sedimentary Geology 231, 98114.Google Scholar
Yang, J. S., Shi, R. D., Wu, C. L., Su, D. C., Chen, S. Y., Wang, X. B. & Wooden, J. 2008. Petrology and SHRIMP age of the Hongliugou ophiolite at Milan, north Altun, at the northern margin of the Tibetan plateau. Acta Petrologica Sinica 24, 1567–84 (in Chinese with English abstract).Google Scholar
Yin, J. Y., Chen, W., Yuan, C., Yu, S., Xiao, W. J., Long, X. P., Li, J. & Sun, J. B. 2015. Petrogenesis of Early Carboniferous adakitic dikes, Sawur region, northern West Junggar, NW China: implications for geodynamic evolution. Gondwana Research 27, 1630–45.Google Scholar
Yin, J. Y., Long, X. P., Yuan, C., Sun, M., Zhao, G. C. & Geng, H. Y. 2013. A late Carboniferous–Early Permian slab window in the West Junggar of NW China: geochronological and geochemical evidence from mafic to intermediate dikes. Lithos 175–176, 146–62.Google Scholar
Yu, S. Y., Zhang, J. X., Qin, H. P., Sun, D. Y., Zhao, X. L., Cong, F. & Li, Y. S. 2015. Petrogenesis of the early Paleozoic low-Mg and high-Mg adakitic rocks in the North Qilian orogenic belt, NW China: implications for transition from crustal thickening to extension thinning. Journal of Asian Earth Sciences 107, 122–39.Google Scholar
Yu, S., Zhang, J. & Real, P. G. D. 2012. Geochemistry and zircon U–Pb ages of adakitic rocks from the Dulan area of the North Qaidam UHP terrane, north Tibet: constrains on the timing and nature of regional tectonothermal events associated with collisional orogeny. Gondwana Research 21, 167–79.Google Scholar
Yuan, C., Sun, M., Wilde, S., Xiao, W., Xu, Y., Long, X. & Zhao, G. 2010. Post-collisional plutons in the Balikun area, East Chinese Tianshan: evolving magmatism in response to extension and slab break-off. Lithos 119, 269–88.Google Scholar
Yue, Y. J. & Liou, J. G. 1999. Two-stage evolution model for the Altun Tagh fault, China. Geology 27, 227– 30.Google Scholar
Zeng, L. S., Gao, L. E., Dong, C. Y. & Tang, S. H. 2012. High-pressure melting of metapelite and the formation of Ca-rich granitic melts in the Namche Barwa Massif, southern Tibet. Gondwana Research 21, 138–51.Google Scholar
Zeng, L., Gao, L. E., Xie, K. & Zeng, J. L. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan gneiss domes: melting thickened lower continental crust. Earth and Planetary Science Letters 303, 251–66.Google Scholar
Zhang, J. X., Li, J. P., Yu, S. Y., Meng, F. C., Mattinson, C. G., Yang, H. J. & Ker, C. M. 2012. Provenance of eclogitic metasediments in the north Qilian HP/LT metamorphic terrane, western China: geodynamic implications for early Paleozoic subduction-erosion. Tectonophysics 570–571, 78101.Google Scholar
Zhang, C., Ma, C. Q. & Holtz, F. 2010. Origin of high-Mg adakitic magmatic enclaves from the Meichuan pluton, southern Dabie orogen (central China): implications for delamination of the lower continental crust and melt-mantle interaction. Lithos 119, 467–84.Google Scholar
Zhang, J. X., Mattinson, C. G., Meng, F. C. & Wan, Y. S. 2005. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altun Tagh, NW China: P–T history and U–Pb geochronology. Journal of Metamorphic Geology 23, 491510.Google Scholar
Zhang, J. X., Meng, F. C. & Wan, Y. S. 2007. A cold Early Paleozoic subduction zone in the North Qilian Mountains, NW China: petrological and U–Pb geochronological constraints. Journal of Metamorphic Geology 25, 285304.Google Scholar
Zhang, J. X., Meng, F. C. & Yang, J. S. 2005. A new HP/LT metamorphic terrane in the northern Altun Tagh, western China. International Geology Review 47, 371–86.Google Scholar
Zhang, J. X., Meng, F. C., Yu, S. Y., Chen, W. & Chen, S. Y. 2007. Ar–Ar geochronology of blueschist and eclogite in the north Altun Tagh HP/LT metamorphic belt and their regional tectonic implication. Geology in China 34, 558–64 (in Chinese with English abstract).Google Scholar
Zhang, J. X., Zhang, Z. M., Xu, Z. Q., Yang, J. S. & Cui, J. W. 1999. The age of U–Pb and Sm–Nd for eclogite from the western segment of Altun Tagh tectonic belt. Chinese Science Bulletin 44, 2256–9.Google Scholar
Zhao, Z. H., Xiong, X. L., Wang, Q., Wyman, D. A., Bao, Z. W., Bai, Z. H. & Qiao, Y. L. 2008. Underplating-related adakites in Xinjiang Tianshan, China. Lithos 102, 374–91.Google Scholar
Zheng, Y. C., Hou, Z. Q., Gong, Y. L. & Liang, W. 2014. Petrogenesis of Cretaceous adakite-like intrusions of the Gangdese Plutonic Belts, southern Tibet: implications for mid-ocean ridge subduction and crustal growth. Lithos 190, 240–63.Google Scholar