Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T07:25:26.294Z Has data issue: false hasContentIssue false

Carbon- and oxygen-isotope stratigraphy of the English Chalk and Italian Scaglia and its palaeoclimatic significance

Published online by Cambridge University Press:  01 May 2009

H. C. Jenkyns
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK
A. S. Gale
Affiliation:
Department of Geology, Imperial College, Prince Consort Road, London SW7 2BP, UK and Department of Palaeontology, the Natural History Museum, Cromwell Road, London SW7 5BD, UK
R. M. Corfield
Affiliation:
Department of Earth Sciences, University of Oxford, Parks Road, Oxford OX1 3PR, UK

Abstract

A detailed carbon- and oxygen-isotope stratigraphy has been generated from Upper Cretaceous coastal Chalk sections in southern England (East Kent; Culver Cliff, Isle of Wight; Eastbourne and Seaford Head, Sussex; Norfolk Coast) and the British Geological Survey (BGS) Trunch borehole, Norfolk. Data are also presented from a section through the Scaglia facies exposed near Gubbio, Italian Apennines. Wherever possible the sampling interval has been one metre or less. Both the Chalk and Scaglia carbon-isotopic curves show minor positive excursions in the mid-Cenomanian, mid- and high Turonian, basal Coniacian and highest Santonian–lowest Campanian; there is a negative excursion high in the Campanian in Chalk sections that span that interval. The well-documented Cenomanian–Turonian boundary ‘spike’ is also well displayed, as is a broad positive excursion centred on the upper Coniacian. A number of these positive excursions correlate with records of organic-carbon-rich deposition in the Atlantic Ocean and elsewhere. The remarkable similarity in the carbon-isotope curves from England and Italy enables cross-referencing of macrofossil and microfossil zones and pinpoints considerable discrepancy in the relative positions of the Turonian, Coniacian and Santonian stages.

The oxygen-isotope values of the various Chalk sections, although showing different absolute values that are presumably diagenesis-dependent, show nonetheless a consistent trend. The East Kent section, which is very poorly lithified, indicates a warming up to the Cenomanian–Turonian boundary interval, then cooling thereafter. Regional organic-carbon burial, documented for this period, is credited with causing drawdown of CO2 and initiating climatic deterioration (inverse greenhouse effect). Data from other parts of the world are consistent with the hypothesis that the Cenomanian–Turonian temperature optimum was a global phenomenon and that this interval represents a major turning point in the climatic history of the earth.

Type
Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. F. & Arthur, M. A. 1983. Stable isotopes of oxygen and carbon and their application to sedi-mentologic and paleoenvironmental problems. In Short Course, Society of Economic Paleontologists and Mineralogists (contributors Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J. and Land, L. S.), pp. 1151, Chapter 1.Google Scholar
Arthur, M. A. & Dean, W. E. 1986. Cretaceous paleoceanography of the western North Atlantic. In The Geology of North America, M, the western North Atlantic region (eds Vogt, P. R. and Tucholke, B. E.), pp. 617–30. Geological Society of America.Google Scholar
Arthur, M. A., Dean, W. E. & Pratt, L. M. 1988. Geochemical and climatic effects of increased marine organic carbon burial at the Cenomanian/Turonian boundary. Nature 335, 714–17.CrossRefGoogle Scholar
Arthur, M. A., Dean, W. E. & Schlanger, S. O. 1985. Variations in the global carbon cycle during the Cretaceous related to climate, volcanism, and changes in atmospheric CO2. In The Carbon Cycle and Atmos- pheric CO2: Natural Variations Archean to Present. (eds Sundquist, E. T. and Broecker, W. S.), pp. 504–29.Google Scholar
Arthur, M. A. & Fischer, A. G. 1977. Upper Cretaceous–Paleocene magnetic stratigraphy at Gubbio, Italy. I. Lithostratigraphy and sedimentology. Bulletin of the Geological Society of America 88, 367–71.2.0.CO;2>CrossRefGoogle Scholar
Arthur, M. A., Jenkyns, H. C., Brumsack, H. & Schlanger, S. O. 1990. Stratigraphy, geochemistry, and paleoceanography of organic-carbon-rich Cretaceous sequences. In Cretaceous Resources, Events and Rhythms (eds Ginsburg, R. N. and Beaudoin, B.), pp. 75119. NATO ASI Series, no. 304. Dordrecht: Kluwer Academic Publishers.Google Scholar
Arthur, M. A. & Natland, J. H. 1979. Carbonaceous sediments in the North and South Atlantic: the role of salinity in stable stratification of Early Cretaceous basins. In Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment (eds Talwani, M., Hay, W. and Ryan, W. B. F.), pp. 375401. Maurice Ewing Series 3. Washington: American Geophysical Union.CrossRefGoogle Scholar
Arthur, M. A. & Premoli-Silva, I. 1982. Development of widespread organic carbon-rich strata in the mediterranean Tethys. In Nature and Origin of Cretaceous Carbon-rich Fades (eds Schlanger, S. O. and Cita, M. B.), pp. 754. London: Academic Press.Google Scholar
Arthur, M. A., Schlanger, S. O. & Jenkyns, H. C. 1987. The Cenomanian–Turonian Oceanic Anoxic Event. II. Palaeoceanographic controls on organic-matter production and preservation. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 401–20. Geological Society of London, Special Publication no. 26.Google Scholar
Arthurton, R. S., Booth, S. J., Morigi, A. N., Abbott, M. A. W. & Wood, C. J. (In press.) The Geology of the country around Great Yarmouth. Memoir of the British Geological Survey, Sheet 162 (England and Wales).Google Scholar
Bailey, H. W., Gale, A. S., Mortimore, R. N., Swiecicki, A. & Wood, C. J. 1983. The Coniacian–Maastrichtian stage boundaries of the United Kingdom, with particular reference to southern England. Newsletters on Stratigraphy 12, 1942.CrossRefGoogle Scholar
Bailey, H. W., Gale, A. S., Mortimore, R. N., Swiecicki, A. & Wood, C. J. 1984. Biostratigraphical criteria for the recognition of the Coniacian to Maastrichtian stage boundaries in the Chalk of north-west Europe, with particular reference to southern England. Bulletin of the Geological Society of Denmark 33, 31–9.CrossRefGoogle Scholar
Bailey, H. W. & Hart, M. B. 1979. The correlation of the Early Senonian in Western Europe. In Aspekte der Kreide Europas (ed. Wiedmann, J.), pp. 159–71. International Union of Geological Sciences, Series A, no. 6. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Barr, F. T. 1962. Upper Cretaceous planktonic foraminiferida from the Isle of Wight. Palaeontology 4, 552–80.Google Scholar
Berger, W. H. 1979. Impact of deep-sea drilling on paleoceanography. In Deep drilling results in the Atlantic Ocean: continental margins and paleoenvironment (eds Talwani, M., Hay, W. and Ryan, W. B. F.), pp. 297314. Maurice Ewing Series 3. Washington, D.C.: American Geophysical Union.CrossRefGoogle Scholar
Berger, W. H. & Vincent, E. 1986. Deep-sea carbonates: reading the carbon-isotope signal. Geologische Rundschau 75, 249–69.CrossRefGoogle Scholar
Bernoulli, D. 1972. North Atlantic and Mediterranean Mesozoic facies: a comparison. In Initial Reports of the Deep Sea Drilling Project, vol. 11 (Hollister, C. D., Ewing, J. I. et al. ), pp. 801–79. Washington D.C.: U.S. Government Printing Office.Google Scholar
Bernoulli, D. & Jenkyns, H. C. 1974. Alpine, Mediterranean and Central Atlantic Mesozoic Facies in relation to the early evolution of the Tethys. In Modern and Ancient Geosynclinal Sedimentation (eds Dott, R. H. and Shaver, R. H.), pp. 129–60. Special Publication of the Society of Economic Paleontologists and Mineralogists no. 19.CrossRefGoogle Scholar
Birkelund, T., Hancock, J. M., Hart, M. B., Rawson, P. F., Remane, J., Robaszynski, F., Schmid, F. & Surlyk, F. 1984. Cretaceous Stage Boundaries – proposals. Bulletin of the Geological Society of Denmark 33, 320.CrossRefGoogle Scholar
Boersma, A. & Shackleton, N. J. 1981. Oxygen- and carbon-isotope variations and planktonic-foraminifer depth habitats, Late Cretaceous to Paleocene, central Pacific, Deep Sea Drilling Project Sites 463 and 465. In Initial Reports of the Deep Sea Drilling Project, vol. 62 (Thiede, J., Vallier, T. et al. ), pp. 513–26. Washington D.C.: U.S. Government Printing Office.Google Scholar
Bowen, R. 1966. Paleotemperature Analysis. Amsterdam, London, New York: Elsevier, 265 pp.Google Scholar
Bralower, T. 1988. Calcareous nannofossil biostratigraphy and assemblages of the Cenomanian–Turonian boundary: implications for the origin and timing of oceanic anoxia. Paleoceanography 3, 275316.CrossRefGoogle Scholar
Bromley, R. G. 1979. Chalk and bryozoan limestone: facies, sediments, and depositional environments. In Cretaceous–Tertiary boundary events. 1. The Maastrichtian and Danian of Denmark (eds Birkelund, T. and Bromley, R. G.), pp. 1632. Copenhagen.Google Scholar
Bromley, R. G. & Gale, A. S. 1982. The lithostratigraphy of the English Chalk Rock. Cretaceous Research 3, 273306.CrossRefGoogle Scholar
Brumsack, H. J. & Thurow, J. 1986. The geochemical facies of black shales from the Cenomanian/Turonian Boundary Event (CTBE). In Biogeochemistry of Black Shales (eds Degens, E. T., Meyers, P. A. and Brassell, S. C.), pp. 247265. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg no. 60.Google Scholar
Brydone, R. M. 1906. Further notes on the stratigraphy and fauna of the Trimingham Chalk. Geological Magazine 43, 1322; 72–8; 124–31; 289–300.CrossRefGoogle Scholar
Brydone, R. M. 1908. On the subdivisions of the Chalk of Trimingham. Quarterly Journal of the Geological Society of London 63, 401–11.CrossRefGoogle Scholar
Brydone, R. M. 1914. The zone of Offaster pilula in the southern English Chalk. Parts I–IV. Geological Magazine 51, 359–69; 405–11; 449–57; 509–13.CrossRefGoogle Scholar
Brydone, R. M. 1938. On the correlation of some of the Norfolk exposures of Chalk with Belemnitella mucronata. London, 15 pp.Google Scholar
Burdett, J. W., Arthur, M. A. & Lohmann, K. C. 1990. Do the carbon and oxygen signatures of inoceramid bivalves reflect the isotopic signature of Cretaceous seawater? Eos 71, 1352–3.Google Scholar
Burnett, J. 1989. A new nannofossil zonation scheme for the Boreal Campanian. International Nannofossil Association Newsletter 12, 6770.Google Scholar
Carter, D. J. & Hart, M. B. 1977. Aspects of midCretaceous stratigraphic micropalaeontology. Bulletin of the British Museum of Natural History (Geology) 29, 1135.CrossRefGoogle Scholar
Clarke, R. F. A. & Verdier, J. -P. 1967. An investigation of microplankton assemblages from the Chalk of the Isle of Wight. Verhandelingen der koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Naturkunde, Eerste Reeks 24, 196.Google Scholar
Clauser, S. 1987. Évolution de la composition isotopique de l' oxygène des carbonates durant le Campanien– Maastrichtien. Données préliminaires issues de la série de Bidart (Pyrénées-Atlantiques). Comptes Rendus de l'Académie des Sciences, Paris 304, Série II, 579–84.Google Scholar
Cool, T. E. 1982. Sedimentological evidence concerning the palaeoceanography of the Cretaceous western North Atlantic Ocean. Palaeogeography, Palaeoclimatology, Palaeoecology 39, 135.CrossRefGoogle Scholar
Corfield, R. M., Cartlidge, J. E., Premoli-Silva, I. & Housley, R. A. 1991. Oxygen and carbon isotope stratigraphy of the Palaeogene and Cretaceous limestones in the Bottaccione Gorge and the Contessa Highway sections, Umbria, Italy. Terra Nova 3, 414–22.CrossRefGoogle Scholar
Corfield, R. M., Hall, M. A. & Brasier, M. D. 1990. Stable isotope evidence for foraminiferal habitats during the development of the Cenomanian/Turonian oceanic anoxic event. Geology 18, 175–8.2.3.CO;2>CrossRefGoogle Scholar
Cresta, S., Monechi, S. & Parisi, G. 1989. Mesozoic–Cenozoic stratigraphy in the Umbria-Marche area. Memorie descrittive della Carta geologica d'ltalia no. 39, 185 pp.Google Scholar
Crumière, J.-P., Crumière-Airaud, C., Espitalié, J. & Cotillon, P. 1990. Global and regional controls on potential source-rock deposition and preservation: the Cenomanian-Turonian Oceanic Anoxic Event (CTOAE) on the European Tethyan Margin (south-eastern France). In Deposition of Organic Facies (ed. Hue, A. Y.), pp. 107–18. American Association of Petroleum Geologists, Studies in Geology no. 30.Google Scholar
Crux, J. A. 1982. Upper Cretaceous (Cenomanian to Campanian) calcareous nannofossils. In A stratigraphical index of calcareous nannofossils (ed. Lord, A. R.), pp. 81135. Chichester: Ellis Horwood for the British Micropalaeontological Society.Google Scholar
Dickson, J. A. D. 1991. Disequilibrium carbon and oxygen isotope variations in natural calcite. Nature 353, 842–4.CrossRefGoogle Scholar
Douglas, R. G. & Savin, S. M. 1975. Oxygen and carbon isotope analyses of Tertiary and Cretaceous microfossils from Shatsky Rise and other sites in the North Pacific Ocean. In Initial Reports of the Deep Sea Drilling Project, vol. 32 (Larson, R. L., Moberly, R. et al. ), pp.509–20.Google Scholar
Einsele, G. & Wiedmann, J. 1982. Turonian black shales inthe Moroccan coastal basins: first upwelling in the Atlantic Ocean? In Geology of the northwest African continental Margin (eds von Rad, U., Hinz, K., Sarnthein, M. & Seibold, E.), pp. 396414. Berlin, Heidel-berg, New York: Springer.CrossRefGoogle Scholar
Ernst, G. 1963. Stratigraphische und gesteinchemische Untersuchungen im Santon und Campan von Lagerdorf. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 32, 71127.Google Scholar
Farrimond, P., Eglinton, G., Brassell, S. C. & Jenkyns, H. C. 1990. The Cenomanian–Turonian anoxic event in Europe: an organic geochemical study. Marine and Petroleum Geology 7, 7589.CrossRefGoogle Scholar
Flexer, A., Rosenfeld, A., Lipson-Benitah, S. & Honigstein, A. 1986. Relative sea level changes during the Cretaceous in Israel. Bulletin of the American Association of Petroleum Geologists 70, 1685–99.Google Scholar
Gale, A. S. 1980. Penecontemporaneous folding, sedimenttation and erosion in Campanian Chalk near Portsmouth England. Sedimentology 27, 137–51.CrossRefGoogle Scholar
Gale, A. S. 1989. A Milankovitch scale for Cenomanian time. Terra Nova 1, 420–5.CrossRefGoogle Scholar
Gale, A. S. & Cleevely, R. J. 1989. Arthur Rowe and the zones of the White Chalk of the English coast. Proceedings of the Geologists' Association 100, 419–31.CrossRefGoogle Scholar
Gale, A. S., Jenkyns, H. C, Kennedy, W. J. & Corfield, R. M. 1993. Chemostratigraphy versus biostratigraphy: data from around the Cenomanian–Turonian boundary. Journal of the Geological Society, London 150, 2932.CrossRefGoogle Scholar
Gale, A. S., Wood, C. J. & Bromley, R. G. 1987. The lithostratigraphy and marker bed correlation of the White Chalk (Late Cenomanian-Campanian) of southern England. Mesozoic Research 1, 107–18.Google Scholar
Gallois, R. W. & Morter, A. A. 1976. IGS boreholes 1975. East Anglia and South-East England District: Mundesley (132) sheet; Trunch borehole (TG 29333455). Report of the Institute of Geological Sciences 76/10, 810.Google Scholar
Graciansky, P. C. DE, Brosse, E., Deroo, G., Herbin, J. P., Montadert, L., Müller, C., Sigal, J. & Schaaf, A. 1982. Les formations d'âge crétacé de l'Atlantique Nord et leur matière organique: paléogéographie et milieux de dépôt. Revue de l'Institut français du Pétrole 37, 275337.CrossRefGoogle Scholar
Graciansky, P. C. DE, Deroo, G., Herbin, J. P., Jacquin, T., Magniez, F., Montadert, L., Müller, C, Ponsot, C., Schaaf, A. & Sigal, J. 1986. Ocean-wide stagnation episodes in the Late Cretaceous. Geologische Rundschau 75, 1741.CrossRefGoogle Scholar
Håkansson, E., Bromley, R. & Perch-Nielsen, K. 1974. Maastrichtian chalk of north-west Europe – a pelagic shelf sediment. In Pelagic Sediments: on Land and under the Sea (eds Hsü, K. J. and Jenkyns, H. C.), pp. 211–33. Special Publication of the International Association of Sedimentologists no. 1.Google Scholar
Hancock, J. M. 1975. The petrology of the Chalk. Proceedings of the Geologists' Association 86, 499535.CrossRefGoogle Scholar
Hancock, J. M. 1989. Sea-level changes in the British region during the Late Cretaceous. Proceedings of the Geologists' Association 100, 565–94.CrossRefGoogle Scholar
Hancock, J. M. 1991. Ammonite scales for the Cretaceous System. Cretaceous Research 12, 259–91.CrossRefGoogle Scholar
Hancock, J. M. & Kauffman, E. G. 1979. The great transgressions of the Late Cretaceous. Journal of the Geological Society, London 136, 175–86.CrossRefGoogle Scholar
Haq, B. U., Hardenbol, J. & Vail, P. R. 1988. Mesozoic and Cenozoic chronostratigraphy and cycles of sea level change. In Sea level changes: an integrated approach (eds Wilgus, C. K., Hastings, B. S., Posamentier, H., van Wagoner, J., Ross, C. A. and Kendall, C. G. St.), pp. 71108. Special Publication of the Society of Economic Paleontologists and Mineralogists no. 42.CrossRefGoogle Scholar
Hart, M. B., Bailey, H. W., Crittenden, S., Fletcher, B. N., Price, R. J. & Swiecicki, A. 1989. Cretaceous. In Stratigraphical Atlas of Fossil Foraminifera, 2nd ed. (eds Jenkins, D. G. and Murray, J. W.), pp. 273371. Chichester: Ellis Horwood for the British Micropalaeontological Society.Google Scholar
Hart, M. B. & Leary, P. N. 1989. The stratigraphic and palaeogeographic setting of the late Cenomanian ‘anoxic’ event. Journal of the Geological Society, London 146, 305–10.CrossRefGoogle Scholar
Herbin, J. P., Montadert, L., Müller, C., Gomez, R., Thurow, J. & Wiedmann, J. 1986. Organic-rich sedimentation at the Cenomanian–Turonian boundary in oceanic and coastal basins in the North Atlantic and Tethys. In North Atlantic Palaeoceanography (eds Summerhayes, C. P. and Shackleton, N. J.), pp. 389422. Geological Society of London, Special Publication no. 21.Google Scholar
Herbin, J. P., Magniez-Jannin, F. & Müller, C. 1986. Mesozoic organic-rich sediments in the South Atlantic: distribution in time and space. In Biogeochemistry of Black Shales (eds Degens, E. T., Meyers, P. A. and Brassell, S. C.), pp. 7197. Mitteilungen aus dem GeologischPaläontologischen Institut der Universität Hamburg no. 60.Google Scholar
Hilbrecht, H. & Hoefs, J. 1986. Geochemical and palaeontological studies of the δ13C anomaly in boreal and north Tethyan Cenomanian–Turonian sediments in Germany and adjacent areas. Palaeogeography, Palaeoclimatology, Palaeoecology 53, 169–89.CrossRefGoogle Scholar
Hilbrecht, H., Arthur, M. A. & Schlanger, S. O. 1986. The Cenomanian–Turonian boundary event: sedimenttary, faunal and geochemical criteria developed from stratigraphic studies in Germany. In Global Bio-Events, Lecture Notes in Earth Sciences (ed. Walliser, O.), pp. 345–51. Berlin, Heidelberg: Springer.Google Scholar
Honigstein, A., Lipson-Benitah, S., Conway, B., Flexer, A. & Rosenfeld, A. 1989. Mid-Turonian anoxic event in Israel–a multidisciplinary approach. Palaeogeography, Palaeoclimatology, Palaeoecology 69, 103–12.CrossRefGoogle Scholar
Hudson, J. D. 1967. Speculations on the depth relations of calcium carbonate solution in Recent and ancient seas. Marine Geology 5, 473–80.CrossRefGoogle Scholar
Hudson, J. D. 1977. Stable isotopes and limestone lithification. Journal of the Geological Society, London 133, 637–60.CrossRefGoogle Scholar
Hudson, J. D. & Anderson, T. F. 1989. Ocean temperatures and isotopic compositions through time. Transactions of the Royal Society of Edinburgh: Earth Sciences 80, 183–92.CrossRefGoogle Scholar
Irwin, H., Curtis, C. D. & Coleman, M. L. 1977. Isotopic evidence for source of diagenetic carbonates formed during burial of organic-rich sediments. Nature 269, 209–13.CrossRefGoogle Scholar
Jarvis, I., Carson, G. A., Cooper, M. K. E., Hart, M. B., Leary, P. N., Tocher, B. A., Horne, D. & Rosenfeld, A. 1988. Microfossil assemblages and the Cenomanian–Turonian (late Cretaceous) oceanic anoxic event. Cretaceous Research 9, 3103.CrossRefGoogle Scholar
Jarvis, I. & Tocher, B. A. 1987. Field Meeting: the Cretaceous of SE Devon, 14th–16th March, 1986. Proceedings of the Geologists' Association 98, 5166.CrossRefGoogle Scholar
Jarvis, I. & Woodroof, P. B. 1984. Stratigraphy of the Cenomanian and basal Turonian (Upper Cretaceous) between Branscombe and Seaton, SE Devon, England. Proceedings of the Geologists' Association 95, 193215.CrossRefGoogle Scholar
Jeans, C. V., Long, D., Hall, M. A., Bland, D. J. & Cornford, C. 1991. The geochemistry of the Plenus Marls at Dover, England: evidence of fluctuating oceanographic conditions and of glacial control during the development of the Cenomanian–Turonian δ13C anomaly. Geological Magazine 128, 603–32.CrossRefGoogle Scholar
Jefferies, R. P. S. 1962. The palaeoecology of the Actinocamax plenus subzone (lowest Turonian) in the AngloParis Basin. Palaeontology 4, 609–47.Google Scholar
Jefferies, R. P. S. 1963. The stratigraphy of the Actinocamax plenus subzone (Turonian) in the AngloParis Basin. Proceedings of the Geologists' Association 74, 134.CrossRefGoogle Scholar
Jenkyns, H. C. 1980. Cretaceous anoxic events: from continents to oceans. Journal of the Geological Society, London 137, 171–88.CrossRefGoogle Scholar
Jenkyns, H. C. 1985. The Early Toarcian and Cenomanian–Turonian anoxic events in Europe: comparisons and contrasts. Geologische Rundschau 74, 505–18.CrossRefGoogle Scholar
Jenkyns, H. C. 1988. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. American Journal of Science 288, 101–51.CrossRefGoogle Scholar
Jenkyns, H. C. 1991. Impact of Cretaceous sea level rise and anoxic events on the Mesozoic carbonate platform of Yugoslavia. Bulletin of the American Association of Petroleum Geologists 75, 1007–17.Google Scholar
Jenkyns, H. C. & Clayton, C. J. 1986. Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33, 87106.CrossRefGoogle Scholar
Johansen, M. B. & Surlyk, F. 1990. Brachiopods and the stratigraphy of the Upper Campanian and Lower Maastrichtian Chalk of Norfolk, England. Palaeontology 33, 823–72.Google Scholar
JøRgensen, N. O. 1987. Oxygen and carbon isotope compositions of Upper Cretaceous chalk from the Danish sub-basin and the North Sea Central Graben. Sedimentology 34, 559–70.CrossRefGoogle Scholar
Kennedy, W. J. 1969. The correlation of the Lower Chalk of south-east England. Proceedings of the Geologists' Association 80, 459560.CrossRefGoogle Scholar
Kennedy, W. J. & Cobban, W. A. 1991. Stratigraphy and interregional correlation of the Cenomanian–Turonian transition in the Western Interior of the United States near Pueblo, Colorado, a potential boundary stratotype for the base of the Turonian stage. Newsletters on Stratigraphy 24, 133.CrossRefGoogle Scholar
Kennedy, W. J. & Odin, G. S. 1982. The Jurassic and Cretaceous time scale in 1981. In Numerical dating in stratigraphy (ed. Odin, G. S.), pp. 557–92, Chichester: John Wiley.Google Scholar
Kolodny, Y. & Raab, M. 1988. Oxygen isotopes in phosphatic fish remains from Israel; paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeography, Palaeoclimatology, Palaeoecology 64, 5967.CrossRefGoogle Scholar
Kuhnt, W., Thurow, J., Herbin, J. P. & Wiedmann, J. 1986. Oceanic anoxic conditions around the Cenomanian/Turonian boundary and the response of the biota. In Biogeochemistry of Black Shales (eds Degens, E. T., Meyers, P. A. and Brassell, S. C.), pp. 205–46. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg no. 60.Google Scholar
Kuhnt, W., Herbin, J. P., Thurow, J. & Wiedmann, J. 1990. Distribution of Cenomanian–Turonian organic facies in the western Mediterranean and along the adjacent Atlantic margin. In Deposition of organic facies (ed. Huc, A. Y.), pp. 133–60. American Association of Petroleum Geologists, Studies in Geology, no. 30.Google Scholar
Lancelot, Y. 1978. Relations entre évolution sédimentaire et tectonique de la Plaque pacifique depuis le Crétacé inferieur. Mémoire de la Société géologique de France no. 134, 40 pp.Google Scholar
Lancelot, Y. & Larson, R. L. 1975. Sedimentary and tectonic evolution of the northwestern Pacific. In Initial Reports of the Deep Sea Drilling Project, vol. 32 (Larson, R. L., Moberly, R. et al. ), pp. 925–39. Washington D.C.: U.S. Government Printing Office.Google Scholar
Larson, R. L. 1991. Geological consequences of superplumes. Geology 19, 963–6.2.3.CO;2>CrossRefGoogle Scholar
Lipson-Benitah, S., Flexer, A., Rosenfeld, A., Honig-stein, A., Conway, B. & Eris, H. 1990. Dysoxic sedimentation in the Cenomanian–Turonian Daliyya Formation, Israel. In Deposition of organic fades (ed. Huc, A. Y.), pp. 2739. American Association of Petroleum Geologists, Studies in Geology, no. 30.Google Scholar
Lowenstam, H. A. & Epstein, S. 1954. Paleotemperatures of the post-Aptian Cretaceous as determined by the oxygen isotope method. Journal of Geology 62 (3), 207–48.CrossRefGoogle Scholar
Lowrie, W., Channell, J. & Alvarez, W. 1980. A review of magnetic stratigraphy investigations in Cretaceous pelagic carbonate rocks. Journal of Geophysical Research 85B, 3597–605.CrossRefGoogle Scholar
Maliva, R. G., Dickson, J. A. D. & Raheim, A. 1991. Modelling of chalk diagenesis (Eldfisk Field, Norwegian North Sea) using whole rock and laser ablation stable isotopic data. Geological Magazine 128, 43–9.CrossRefGoogle Scholar
McArthur, J. M., Thirlwall, M. F., Gale, A. S., Kennedy, W. J., Burnett, J. A., Mattey, D. & Lord, A. R. 1993. Strontium isotope stratigraphy for the Late Cretaceous: a new curve based on the English Chalk. In High Resolution Stratigraphy (eds Hailwood, E. A. and Kidd, R. B.), 195209. Geological Society of London, Special Publication no. 70.Google Scholar
Monechi, S. 1981. Aptian–Cenomanian calcareous nannoplankton from some sections in the Umbrian Apennines. Rivista italiana di Paleontologia e Stratigrafia 87, 193226.Google Scholar
Mortimore, R. N. 1983. The stratigraphy and sediment- tation of the Turonian–Campanian in the Southern Province of England. Zitteliana 10, 2741.Google Scholar
Mortimore, R. N. 1986. Stratigraphy of the Upper Cretaceous White Chalk of Sussex. Proceedings of the Geologists' Association 97, 97139.CrossRefGoogle Scholar
Mortimore, R. N. 1987. Controls on Upper Cretaceous sedimentation in the South Downs, with particular reference to flint distribution. In The scientific study of flint and chert (eds G. de C., Sieveking and Hart, M. B.), pp. 2142. Cambridge University Press.Google Scholar
Mortimore, R. N. & Wood, C. J. 1986. The distribution of flint in the English Chalk, with particular reference to the ‘Brandon Flint Series’ and the high Turonian flint maximum. In The scientific study of flint and chert (eds G. de C., Sieveking and Hart, M. B.), pp. 720. Cambridge University Press.Google Scholar
Naydin, D. P., Teys, R. V. & Zadorozhnyy, I. K. 1966. Isotopic paleotemperatures of the Upper Cretaceous in the Russian Platform and other parts of the USSR. Geochemistry International 3, 1038–51.Google Scholar
Pacey, N. R. 1984. Bentonites in the Chalk of central eastern England and their relation to the opening of the northeast Atlantic. Earth and Planetary Science Letters 67, 4860.CrossRefGoogle Scholar
Peake, N. B. & Hancock, J. M. 1961. The Upper Cre- taceous of Norfolk. Transactions of the Norfolk and Norwich Naturalists' Society 19, 293339.Google Scholar
Peake, N. B. & Hancock, J. M. 1970. The Upper Cretaceous of Norfolk (reprinted with corrigenda and addenda). In The Geology of Norfolk (eds Larwood, G. P. and Funnell, B. M.), pp. 293339. London and Ashford.Google Scholar
Pedersen, T. F. & Calvert, S. E. 1990. Anoxia vs. productivity: what controls the formation of organiccarbon-rich sediments and sedimentary rocks? Bulletin of the American Association of Petroleum Geologists 74, 454–66.Google Scholar
Pelet, R. 1987. A model of organic sedimentation on present-day continental margins. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 167–80. Geological Society of London, Special Publication no. 26.Google Scholar
Phillips, W. 1821. Remarks on the chalk cliffs in the neighbourhood of Dover, and on the Blue Marie covering the Green Sand, near Folkestone. Transactions of the Geological Society of London 5, 1651.CrossRefGoogle Scholar
Pirrie, D. & Marshall, J. D. 1990. Diagenesis of Inoceramus and Late Cretaceous paleoenvironmental geochemistry: a case study from James Ross Island, Antarctica. Palaios 5, 336–45.CrossRefGoogle Scholar
Pratt, L. M., Arthur, M. A., Dean, W. E. & Scholle, P. A. 1993. Paleoceanographic cycles and events during the Late Cretaceous in the Western Interior Seaway of North America. In Cretaceous Evolution of the Western Interior Basin of North America (eds Caldwell, W. G. E. and Kauffman, E. G.), Special Paper of the Geological Association of Canada, in press.Google Scholar
Pratt, L. M., Force, E. R. & Pomerol, B. 1991. Coupled manganese and carbon-isotopic events in marine carbonates at the Cenomanian–Turonian boundary. Journal of Sedimentary Petrology 61, 370–83.Google Scholar
Pratt, L. M. & Threlkeld, C. N. 1984. Stratigraphic significance of 13C/12C ratios in mid-Cretaceous rocks of the Western Interior, U.S.A. In The Mesozoic of middle North America (eds Stott, D. F. and Glass, D. J.), pp. 305–12. Memoir of the Canadian Society of Petroleum Geologists no. 9.Google Scholar
Premoli–Silva, I. 1977. Upper Cretaceous–Paleo cene magnetic stratigraphy at Gubbio, Italy. II. Biostratigraphy. Bulletin of the Geological Society of America 88, 371–4.2.0.CO;2>CrossRefGoogle Scholar
Price, F. G. H. 1877. On the beds between the Gault and Upper Chalk near Folkestone. Quarterly Journal of the Geological Society of London 33, 431–48.CrossRefGoogle Scholar
Rad, U. von, Thurow, J., Haq, B. U., Gradstein, F. & Ludden, J. 1989. Triassic to Cenozoic evolution of the NW Australian continental margin and the birth of the Indian Ocean (preliminary results of ODP Legs 122 and 123). Geologische Rundschau 78, 11891210.Google Scholar
Rawson, P. F., Curry, D., Dilley, F. C, Hancock, J. M., Kennedy, W. J., Neale, J. M., Wood, C J. & Worssam, B. C. 1978. A correlation of Cretaceous rocks in the British Isles. Special Report of the Geological Society, London no. 9, 70 pp.Google Scholar
Renard, M. 1986. Pelagic carbonate chemostratigraphy (Sr, Mg, 18O, 13C). Marine Micropaleontology 10, 117–64.CrossRefGoogle Scholar
Robaszynski, F., Caron, M., Dupuis, C, Amédro, F., González Donoso, J. M., Linares, D., Hardenbol, J., Gartner, S., Calandra, F. & Deloffre, R. 1990. A tentative integrated stratigraphy in the Turonian of central Tunisia: Formations, Zones and sequential stratigraphy in the Kalaat Senan area. Bulletin des Centres de Recherche Exploration-Production ElfAquitaine 14, 213384.Google Scholar
Robaszynski, F., Juignet, P., Gale, A. S., AmÉdro, F. & Hardenbol, J. 1992. Sequence stratigraphy in the Upper Cretaceous of the Anglo-Paris Basin, exemplified by the Cenomanian stage. Abstracts, Sequence Stratigraphy of European Basins, Dijon, France, 8081.Google Scholar
Robinson, N. D. 1986. Lithostratigraphy of the Chalk Group of the North Downs, south-east England. Proceedings of the Geologists' Association 97, 141170.CrossRefGoogle Scholar
Rowe, A. W. 1899. An analysis of the Genus Micraster, as determined by rigid zonal collecting from the Zone of Rhynchonella cuvieri to that of Micraster cor-anguinum. Quarterly Journal of the Geological Society of London 55, 494547.CrossRefGoogle Scholar
Rowe, A. W. 1900. The zones of the White Chalk of the English coast. I. Kent and Sussex. Proceedings of the Geologists' Association 16, 289368.CrossRefGoogle Scholar
Rowe, A. W. 1908. The zones of the White Chalk of the English coast. V. The Isle of Wight. Proceedings of the Geologists' Association 20, 209352.Google Scholar
Ryan, W. B. F. & Cita, M. B. 1977. Ignorance concerning episodes of ocean-wide stagnation. Marine Geology 23, 197215.CrossRefGoogle Scholar
Saelen, G. 1989. Diagenesis and construction of the belemnite rostrum. Palaeontology 32, 765–98.Google Scholar
Saelen, G. & Karstang, T. V. 1989. Chemical signatures of belemnites. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 177, 336–46.Google Scholar
Sass, E., Bein, A. & Almogi-Labin, A. 1991. Oxygenisotope composition of diagenetic calcite in organicrich rocks: evidence for 18O depletion in marine anaerobic pore water. Geology 19, 839–42.2.3.CO;2>CrossRefGoogle Scholar
Savin, S. M. 1977. History of the earth's surface temperature during the last 100 million years. In Annual Reviews of Earth and Planetary Sciences (eds Donath, F. A., Stehli, F. G. and Wetherill, G. W.), pp. 319–55. Palo Alto, California: Annual Reviews Inc.Google Scholar
Schlanger, S. O., Arthur, M. A., Jenkyns, H. C. & Scholle, P. A. 1987. The Cenomanian–Turonian Oceanic Anoxic Event. I. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13C excursion. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), 371–99. Geological Society of London, Special Publication no. 26.Google Scholar
Schlanger, S. O. & Jenkyns, H. C. 1976. Cretaceous oceanic anoxic events: causes and consequences. Geologie en Mijnbouw 55, 179–84.Google Scholar
Scholle, P. A. 1974. Diagenesis of Upper Cretaceous chalks from England, Northern Ireland, and the North Sea. In Pelagic Sediments: on Land and under the Sea (eds Hsü, K. J. and Jenkyns, H. C.), pp. 177210. Special Publication of the International Association of Sedimentologists no. 1.Google Scholar
Scholle, P. A. 1977. Chalk diagenesis and its relation to petroleum exploration: oil from chalk, a modern miracle? Bulletin of the American Association of Petroleum Geologists 61, 9821009.Google Scholar
Scholle, P. A. & Arthur, M. 1980. Carbon isotope fluctuations in Cretaceous pelagic limestones: potential stratigraphic and petroleum exploration tool. Bulletin of the American Association of Petroleum Geologists 64, 6787.Google Scholar
Scholle, P. A. & Halley, R. B. 1985. Burial diagenesis: out of sight, out of mind! In Carbonate Cements (eds Schneidermann, N. and Harris, P. M.), pp. 309–34. Special Publication of the Society of Economic Paleontologists and Mineralogists no. 36.CrossRefGoogle Scholar
Schönfeld, J., Sirocko, F. & Jørgensen, N. O. 1991. Oxygen isotope composition of Upper Cretaceous chalk at Lägerdorf (NW Germany): its original environnment signal and palaeotemperature interpretation. Cretaceous Research 12, 2746.CrossRefGoogle Scholar
Schulz, M.-G. 1979. Morphometrisch-variationsstatistische Untersuchungen zur Phylogenie der Belemnitengattung Belemnella im Untermaastricht NW-Europas. Geologische Jahrbuch A 47, 157 pp.Google Scholar
Seiglie, G. A. & Baker, M. B. 1984. Relative sea-level changes during the middle and Late Cretaceous from Zaire to Cameroon (central West Africa). In Interregional unconformities and hydrocarbon accumulation (ed. Schlee, J. S.), pp. 81–8. Memoir of the American Association of Petroleum Geologists no. 36.Google Scholar
Shackleton, N. J. 1986. Paleogene stable isotope events. Palaeogeography, Palaeoclimatology, Palaeoecology 57, 91102.CrossRefGoogle Scholar
Shackleton, N. J. 1987. The carbon isotope record of the Cenozoic: history of organic carbon burial and of oxygen in the ocean and atmosphere. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), pp. 423–34. Geological Society of London, Special Publication no. 26.Google Scholar
Sliter, W. V. 1989. Biostratigraphic zonation for Cre- taceous planktonic foraminifers examined in thin section. Journal of Foraminiferal Research 19, 119.CrossRefGoogle Scholar
Spaeth, C., Hoefs, J. & Vetter, U. 1971. Some aspects of isotopic composition of belemnites and related paleotemperatures. Bulletin of the Geological Society of American, 82 3139–50.CrossRefGoogle Scholar
Stevens, G. R. & Clayton, R. N. 1971. Oxygen isotope studies on Jurassic and Cretaceous belemnites from New Zealand and their biogeographic significance. New Zealand Journal of Geology and Geophysics 14, 829–97.CrossRefGoogle Scholar
Suess, E. 1888. Das Antlitz der Erde, vol. 2. Prague, Vienna: F. Tempsky; Leipzig: G. Freytag, 703 pp.Google Scholar
Summerhayes, C. P. 1987. Organic-rich Cretaceous sediments from the North Atlantic. In Marine Petroleum Source Rocks (eds Brooks, J. and Fleet, A. J.), 301–16. Geological Society of London, Special Publication no. 26.Google Scholar
Teys (Teis), R. V., Chupakhin, M. S. & Naydin (Naidin), D. P. 1957. Determination of paleotemperatures from the isotopic composition of oxygen in calcite of certain Cretaceous fossil shells from Crimea. Geochemistry 1957, 323–9.Google Scholar
Thierstein, H. R. & Roth, P. H. 1991. Stable isotopic and carbonate cyclicity in Lower Cretaceous deep-sea sediments: dominance of diagenetic effects. Marine Geology 97, 134.CrossRefGoogle Scholar
Thurow, J., Kuhnt, W. & Wiedmann, J. 1982. Zeitlicher und paläogeographischer Rahmen der Phthanit- und Black Shale-Sedimentation in Marokko. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 165, 147–76.CrossRefGoogle Scholar
Tribovillard, N.-P., Stephan, J.-F., Manivit, H., Reyre, Y., Cotillon, P. & Jautée, E. 1991. Cretaceous black shales of Venezuelan Andes: preliminary results on stratigraphy and paleoenvironmental interpretations. Palaeogeography, Palaeoclimatology, Palaeoecology 81, 313–21.CrossRefGoogle Scholar
Tröger, K. A. 1989. Problems of Upper Cretaceous inoceramid biostratigraphy and palaeobiogeography in Europe and Western Asia. In Cretaceous of western Tethys (ed. Wiedmann, J.), pp. 911–30. Proceedings 3rd International Cretaceous Symposium, Tübingen 1987. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Tuckolke, B. E. & Vogt, P. R. 1979. Initial Reports of the Deep Sea Drilling Project, vol. 43. Washington, D.C.: U.S. Government Printing House, 1115 pp.Google Scholar
Urey, H. C., Lowenstam, H. A., Epstein, S. & McKinney, C. R. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Bulletin of the Geological Society of America 62, 399416.CrossRefGoogle Scholar
Vail, P. R., Mitchum, R. M. & Thompson, S. III 1977. Seismic stratigraphy and global changes of sea level, part 4: global cycles of relative changes of sea level. In Seismic stratigraphy – applications to hydrocarbon exploration (ed. Payton, C. E.), pp. 8397. Memoir of the American Association of Petroleum Geologists, no. 26.Google Scholar
Veizer, J. 1974. Chemical diagenesis of belemnite shells and possible consequences for paleotemperature determinations. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 147, 91111.Google Scholar
Vincent, E. & Berger, W. H. 1985. Carbon dioxide and polar cooling in the Miocene: the Monterey Hypothesis. In The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. and Broecker, W. S.), pp. 455–68. American Geophysical Union, Geophysical Monograph no. 32.Google Scholar
Vincent, E. & Killingey, J. S. 1985. Oxygen and carbon isotope record for the early and middle Miocene in the central equatorial Pacific (leg 85) and paleoceanographic implications. In Initial Reports of the Deep Sea Drilling Project vol. 85 (Mayer, L., Theyer, F. et al. ), pp. 749–69. Washington, D.C: U.S. Government Printing Office.Google Scholar
Weimer, R. J. 1984. Relation of unconformities, tectonics, and sea-level changes, Cretaceous of Western Interior, U.S.A. In Interregional unconformities and hydrocarbon accumulation (ed. Schlee, J. S.), pp. 735. Memoir of the American Association of Petroleum Geologists no. 36.Google Scholar
Weissert, H. 1989. C-isotope stratigraphy, a monitor of paleoenvironmental change: a case study from the Early Cretaceous. Surveys in Geophysics 10, 161.CrossRefGoogle Scholar
Weissert, H. & Lini, A. 1991. Ice age interludes during the time of Cretaceous greenhouse climate. In Controversies in modern Geology (eds Müller, D. W., McKenzie, J. A. and Weissert, H.), pp. 173191. London: Academic Press.Google Scholar
White, H. J. O. 1921. A short account of the geology of the Isle of Wight. Memoirs of the Geological Survey, England and Wales. His Majesty's Stationery Office, London. 219 pp.Google Scholar
Wood, C. J. & Smith, E. G. 1978. Lithostratigraphical classification of the Chalk in north Yorkshire. Proceedings of the Yorkshire Geological Survey 42, 263–87.CrossRefGoogle Scholar