Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-20T07:27:38.512Z Has data issue: false hasContentIssue false

Asteroid (Echinodermata) skeletal elements from upper Oligocene deposits of Jamaica and Antigua

Published online by Cambridge University Press:  24 April 2015

DANIEL B. BLAKE
Affiliation:
Department of Geology, University of Illinois, Room 152 CAB, 605 E. Springfield, Champaign, Illinois 61820, USA
STEPHEN K. DONOVAN*
Affiliation:
Department of Geology, Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands
CHRISTOPHER L. MAH
Affiliation:
Department of Invertebrate Zoology, P.O. Box 37012, MRC-163 NMNH, Smithsonian Institution, Washington DC, USA
HAROLD L. DIXON
Affiliation:
Deceased, formerly Department of Geography and Geology, University of the West Indies, Mona, Kingston 7, Jamaica
*
Author for correspondence: [email protected]

Abstract

The Antillean Cenozoic fossil record of asteroids comprises mainly dissociated ossicles. Most common among isolates from upper Oligocene deposits of Jamaica and Antigua are marginal ossicles of an extinct, indeterminate species of Pycinaster. This is the youngest known occurrence of the genus and the first from beyond Europe. A number of relatively complete fossils have been assigned to Pycinaster and (sub)familial status proposed for it together with Phocidaster. The latter proposition is based solely on a few marginals, but available diagnoses are judged insufficient to justify such recognition. The taxon Pycinasteridae is here synonymized with the Goniasteridae, although future study of added features (such as the ventral surface) might justify recognition at a higher taxonomic level. In addition to ossicles assigned to Pycinaster, many marginals are tentatively assigned to the surviving goniasterid Nymphaster. Numerous generic and many species names have been based on asteroid isolates, but the practice demands assumptions that are not readily justified. Linkage of discrete isolates under a single taxon name assumes derivation from a single source, an inference that can be verified only rarely (if ever), therefore reducing names to the single holotype ossicle. Availability of only isolates encourages comparison with extant taxa and biogeography, biasing interpretations with a Holocene overlay. Because of these constraints, a new nominal species of Pycinaster is not justified and assignment of ossicles to Nymphaster is tentative. However, given the importance of asteroids in marine communities, we emphasize the significance, largely ignored, of their presence in Cenozoic deposits of the wider Caribbean.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blainville, H. M. D. de. 1830. Dictionnaire des Sciences Naturelles. Levrault, F. G., Paris, 60 volumes text, 12 volumes plates, one volume portraits.Google Scholar
Blake, D. B. & Hotchkiss, F. H. C. 2004. Recognition of the asteroid (Echinodermata) crown group: implication of the ventral skeleton. Journal of Paleontology 78, 359–70.Google Scholar
Blake, D. B. & Portell, R. W. 2011. Kionaster petersonae, n. gen. n. sp. (Asteroidea), the first fossil occurrence of the Asterodiscididae, from the Miocene of Florida. Swiss Journal of Palaeontology 130, 2542.Google Scholar
Blake, D. B. & Zinsmeister, W. J. 1988. Eocene asteroids (Echinodermata) from Seymour Island, Antarctic Peninsula. In Geology and Paleontology of Seymour Island, Antarctic Peninsula (eds Feldmann, R. M. & Woodburne, M. O.), pp. 489–98. Geological Society of America, Memoir no. 169.Google Scholar
Breton, G. 1988 a. Pycinaster magnificus Spencer, 1913 (Echinodermata, Asteroidea): conservation proposée pour le nom spécifique. Bulletin of Zoological Nomenclature 45, 125–6.Google Scholar
Breton, G. 1988 b. Description d’espèces nouvelles de Goniasteridae (Asteroidea, Echinodermata) du Crétacé de France. Bulletin trimestriel de la Société géologique Normandie et des Amis du Muséum du Havre 75, 940.Google Scholar
Breton, G. 1992. Les Goniasteridae (Asteroidea, Echinodermata) jurassiques et crétacés de France: taphonomie, systématique, biostratigraphie, paléobiogéographie, évolution. Bulletin trimestriel de la Société géologique de Normandie et des Amis du Muséum du Havre 78 (4, supplement), 190 pp.Google Scholar
Breton, G. & Vizcaïno, D. 1997. Astérides (Echinodermata) de l’Ilerdien Moyen (Yprésien) des Corbières (Aude, France): systématique, relations paléobiogéographiques et évolutives. Bulletin de la Société d’Etudes scientifiques de l’Aude 97, 1128.Google Scholar
Brünnich Nielsen, K. 1943. The asteroids of the Senonian and Danian deposits of Denmark. Biologiske Skrifter fra det Dansk Videnskabelige Selskab 2 (5), 168.Google Scholar
Clark, A. M. 1993. An index of names of Recent Asteroidea – Part 2: Valvatida. In Echinoderm Studies (eds Jangoux, M. & Lawrence, J. M.), pp. 187366. Rotterdam: A. A. Balkema.Google Scholar
Clark, A. M. & Downey, M. E. 1992. Starfishes of the Atlantic. London: Chapman and Hall, xxvi+794 pp.Google Scholar
Collins, J. S. H. & Donovan, S. K. 1995. A new species of Necronectes (Decapoda) from the Upper Oligocene of Antigua. Caribbean Journal of Science 31, 122–27.Google Scholar
Dixon, H. L. & Donovan, S. K. 1994. Local extinction patterns and the decline of the Jamaican Paleogene echinoid fauna. Palaios 9, 506–11.Google Scholar
Dixon, H. L. & Donovan, S. K. 1998. Oligocene echinoids of Jamaica. Tertiary Research 18, 95124.Google Scholar
Dixon, H. L., Donovan, S. K., with appendices by Domning, D. P. & Taylor, P. D. 1999. Report of a field meeting to the area around Browns Town, parish of St. Ann, north-central Jamaica, 21st February, 1998. Journal of the Geological Society of Jamaica 33 (for 1998), 2430.Google Scholar
Dixon, H. L., Donovan, S. K. & Veltkamp, C. J. 1994. Crinoid and ophiuroid ossicles from the Oligocene of Jamaica. Caribbean Journal of Science 30, 143–45.Google Scholar
Donovan, S. K. (ed.) 1998. The Pliocene Bowden shell bed, southeast Jamaica. Contributions to Tertiary and Quaternary Geology 35, 175 pp.Google Scholar
Donovan, S. K. 2001. Evolution of Caribbean echinoderms during the Cenozoic: moving towards a complete picture using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 166, 177–92.Google Scholar
Donovan, S. K. (ed.) 2004. The Mid-Cainozoic White Limestone Group of Jamaica. Cainozoic Research 3 (for 2003), 219 pp.Google Scholar
Donovan, S. K., Blissett, D. J. & Pickerill, R. K. 2015. Jamaican Cenozoic ichnology: review and prospectus. Geological Journal 50, 364–82.Google Scholar
Donovan, S. K., Harper, D. A. T. & Portell, R. W. (in press). Shell-filled burrows in the Upper Oligocene Antigua Formation, Antigua, Lesser Antilles. Ichnos.Google Scholar
Donovan, S. K., Harper, D. A. T., Portell, R. W. & Renema, W. 2014 a. Neoichnology and implications for stratigraphy of reworked Upper Oligocene oysters, Antigua, West Indies. Proceedings of the Geologists’ Association 125, 99106.Google Scholar
Donovan, S. K., Jackson, T. A., Harper, D. A. T., Portell, R. W. & Renema, W. 2014 b. Classic localities explained 16: The Upper Oligocene of Antigua: the volcanic to limestone transition in a limestone Caribbee. Geology Today 30, 151–8.Google Scholar
Donovan, S. K. & Pickerill, R. K. 2013. On marls and marlstones. Bulletin of the Mizunami Fossil Museum 39, 127–8.Google Scholar
Donovan, S. K., Portell, R. W. & Domning, D. P. 2007. Contrasting patterns and mechanisms of extinction during the Eocene–Oligocene transition in Jamaica. In Biogeography, Time and Place: Distributions, Barriers and Islands (ed. Renema, W.), pp. 247–73. Dordrecht: Springer.CrossRefGoogle Scholar
Fisher, W. K. 1911. New genera of starfishes from the Philippine Islands and Celebes. Proceedings of the US National Museum 40, 415–27.Google Scholar
Fisher, W. K. 1913. Four new genera and fifty-eight new species of starfishes from the Philippine Islands, Celebes and the Moluccas. Proceedings of the US National Museum 43, 599648.Google Scholar
Fisher, W. K. 1919. Starfishes of the Philippine seas and adjacent waters. Bulletin of the US National Museum 3 (100), 1547.Google Scholar
Foltz, D. W., Fatland, S. D., Eléaume, M., Markello, K., Howell, K. L., Neill, K. & Mah, C. L. 2013. Global population divergence of the sea star Hippasteria phrygiana corresponds to the onset of the last glacial period of the Pleistocene. Marine Biology 160, 1285–96.Google Scholar
Forbes, E. 1839. On the Asteriadae of the Irish Sea. Memoirs of the Wernerian Society, Edinburgh 8, 114–29.Google Scholar
Forbes, E. 1841. A History of British Starfish and Other Animals of the Class Echinodermata. London: John Van Voorst, 267 pp.Google Scholar
Forbes, E. 1848. On the Asteridae found fossil in British strata. Memoirs of the Geological Survey of Great Britain and of the Museum of Practical Geology in London 2, 457–82.Google Scholar
Gale, A. S. 1986. Goniasteridae (Asteroidea, Echinodermata) from the Late Cretaceous of north-west Europe. 1. Introduction. The genera Metopaster and Recurvaster . Mesozoic Research 1, 169.Google Scholar
Gale, A. S. 1987 a. Phylogeny and classification of the Asteroidea (Echinodermata). Zoological Journal of the Linnean Society 89, 107–32.Google Scholar
Gale, A. S. 1987 b. Goniasteridae (Asteroidea, Echinodermata) from the Late Cretaceous of north-west Europe. 2. The genera Calliderma, Crateraster, Nymphaster and Chomataster . Mesozoic Research 1, 151–86.Google Scholar
Gale, A. S. 1989. Migration and evolution in Late Cretaceous Goniasteridae (Asteroidea, Echinodermata) from north-west Europe. Proceedings of the Geologists’ Association 100, 281–91.Google Scholar
Gray, J. E. 1840. A synopsis of the genera and species of the class Hypostoma (Asterias Linnaeus). Annals & Magazine of Natural History 6, 175–84, 275–90.Google Scholar
Helm, C. & Frerichs, U. 2013. Seesterne (Asteroidea). In Fossilien aus dem Campan von Hannover, 3. Komplett überarbeitete Auflage (ed. Schneider, C.), pp. 192200. Hannover: Arbeitskreis Paläontologie.Google Scholar
Jackson, R. T. 1922. Fossil Echini of the West Indies. Carnegie Institution of Washington publication no. 306, 103 pp.CrossRefGoogle Scholar
Jagt, J. W. M. 1999. An overview of Late Cretaceous and Early Palaeogene echinoderm faunas from Liège-Limburg (Belgium, The Netherlands). Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 69 (Supplement A), 103–18.Google Scholar
Jagt, J. W. M. 2000 a. Late Cretaceous–Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium. Part 5–Asteroids. Scripta Geologica 121, 377504.Google Scholar
Jagt, J. W. M. 2000 b. Late Cretaceous–Early Palaeogene echinoderms and the K/T boundary in the southeast Netherlands and northeast Belgium. Part 6–Conclusions. Scripta Geologica 121, 505–77.Google Scholar
Jagt, J. W. M., Thuy, B., Donovan, S. K., Stöhr, S., Portell, R. W., Pickerill, R. K., Harper, D. A. T., Lindsay, W. & Jackson, T. A. 2014. A starfish bed in the Middle Miocene Grand Bay Formation of Carriacou, The Grenadines (West Indies). Geological Magazine 151, 381–93.Google Scholar
Lemoine, P. & Douvillé, R. 1904. Sur le Genre Lepidocyclina Gümbel. Société Géologique de France, Mémoir Paléontologie no. 12 (Mémoir no. 32), 1–41.Google Scholar
Mah, C. L. 2007. Systematics, phylogeny, and historical biogeography of the Pentagonaster clade (Asteroidea, Valvatida, Goniasteridae). Invertebrate Systematics 21, 311–39.Google Scholar
Mercier, J. 1935. Les stelléridés mésozoïques du bassin de Paris. Mémoires de la Société Linnéenne de Normandie 1/2, 664.Google Scholar
Mercier, J. 1936. Les astérides du Coniacien d’Aulnay-s-Iton (Eure). Bulletin de la Société Linnéenne de Normandie 8, 97–8.Google Scholar
Mitchell, S. F. 2004. Lithostratigraphy and palaeogeography of the White Limestone Group. In The Mid-Cainozoic White Limestone Group of Jamaica (ed. Donovan, S. K.). Cainozoic Research 3, 529.Google Scholar
Müller, A. H. 1953. Die isolierten Skelettelemente der Asteroidea (Asterozoa) aus der obersenonen Schreibkreide von Rügen. Geologie, Beiheft 8, 66 pp.Google Scholar
Néraudeau, D. & Breton, G. 1993. Astérides du Cénomanien dé Charente-Maritime (SW France). Geobios 26, 105–20.Google Scholar
Neumann, C. 2000. Evidence of predation on Cretaceous sea stars from north-west Germany. Lethaia 33, 6570.Google Scholar
Orbigny, A. D. d’. 1850. Prodrome du Paléontologie Stratigraphique Universelle des Animaux Mollusques et Rayonnés Faisant suite au Cours Élémentaire de Paléontologie et de Géologie Stratigraphique. Paris: Victor Masson, v. 1 [1850 (for 1849)], 392 pp.Google Scholar
Perrier, E. 1881. Description sommaire des espèces nouvelles d’Astéries. Bulletin of the Museum of Comparative Zoology, Harvard University 9, 131.Google Scholar
Perrier, E. 1884. Mémoire sur les étoiles de mer recueillis dans la Mer des Antilles et le Golfe de Mexique. Nouvelles Archives du Musèum d’Histoire naturelle, Paris 6, 127276.Google Scholar
Perrier, E. 1894. Stéllerides. In Expédition Scientifique du Travailleur et du Talisman 3. Paris: G. Masson, 143 pp.Google Scholar
Portell, R. W. & Donovan, S. K. (in press). Echinoderms from the Eocene of Seven Rivers, parish of St. James, western Jamaica. In The Eocene Fossil Site of Seven Rivers, Jamaica: Geology, Paleontology, and Evolutionary and Biogeographic Implications (eds Domning, D. P. & Portell, R. W.). Heidelberg: Springer.Google Scholar
Schopf, T. J. M., Raup, D. M., Gould, S. J. & Simberloff, D. S. 1975. Genomic versus morphologic rates of evolution: influence of morphologic complexity. Paleobiology 1, 6370.Google Scholar
Schulz, M.-G. & Weitschat, W. 1971. Asteroideen aus der Schreibkreide von Lägerdorf (Holstein) und Hemmoor (Nord-Niedersachsen). Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg 40, 107–30.Google Scholar
Sladen, W. P. 1889. Report on the Asteroidea. Report on the Scientific Results of the Voyage of H.M.S. Challenger. Zoology 30, 894 pp.Google Scholar
Sladen, W. P. 1891. The fossil Echinodermata, Cretaceous, vol. II, part I (Asteroidea). Monograph of the Palaeontographical Society, London, 44 (no. 209 for 1890), 128.Google Scholar
Sladen, W. P. 1893. The fossil Echinodermata, Cretaceous, vol. II, part II (Asteroidea). Monograph of the Palaeontographical Society, London, 47 (no. 223), 2966.Google Scholar
Smith, A. B., Paul, C. R. C., Gale, A. S. & Donovan, S. K. 1988. Cenomanian and Lower Turonian echinoderms from Wilmington, south-east Devon, England. Bulletin of the British Museum (Natural History), Geology Series 42, 245 pp.Google Scholar
Smith, A. B. & Wright, C. W. 2002. Echinoderms. In Palaeontological Association Field Guides to Fossils, Fossils of the Chalk, second edition (eds Smith, A. B. & Batten, D. J.), 251–95. London: Palaeontological Association, ix+374 pp.Google Scholar
Spencer, W. K. 1905. The fossil Echinodermata, Cretaceous, vol. II, part III. Monograph of the Palaeontographical Society, London, 59 (no. 278), 6790.Google Scholar
Spencer, W. K. 1907. The fossil Echinodermata, Cretaceous, vol. II, part IV. Monograph of the Palaeontographical Society, London, 61 (no. 294), 91132.Google Scholar
Spencer, W. K. 1913. The evolution of the Cretaceous Asteroidea. Philosophical Transactions of the Royal Society of London B214, 99177.Google Scholar
Spencer, W. K. 1914–40. The British Palaeozoic Asterozoa. Monograph of the Palaeontographical Society, London, pt. 1 (1914 for 1913), 67 (no. 328), 1–56; pt. 2 (1916 for 1915), 69 (no. 335), 57–108; pt. 3 (1918 for 1916), 70 (no. 338), 109–168; pt. 4 (1919 for 1917), 71 (no. 342), 169–196; pt. 5 (1922 for 1920), 74 (no. 349), 197–236; pt. 6 (1924 [printed January 1925] for 1922), 76 (no. 356), 237–324; pt. 7 (1927 for 1925), 79 (no. 366), 325–388; pt. 8 (1930 for 1928), 82 (no. 376), 389–436; pt. 9 (1934 for 1933), 87 (no. 394), 437–494; pt. 10 (1940), 94 (no. 420), 495–540.Google Scholar
Spencer, W. K. & Wright, C. W. 1966. Asterozoans. In Treatise on Invertebrate Paleontology, Pt. U, Echinodermata 3(1) (ed. Moore, R. C.), U4-U107. New York and Lawrence: The Geological Society of America and The University of Kansas Press.Google Scholar
Stimpson, W. 1857. On the Crustacea and Echinodermata of the Pacific shores of North America. Boston Journal of Natural History 6, 444532.Google Scholar
Valette, A. 1902. Note sur quelques stelléridés de la craie sénonienne du département de l’Yonne. Bulletin de la Société des Sciences historiques et naturelles de l’Yonne 56, 326.Google Scholar
Valette, A. 1915. Notes sur quelques stelléridés de la craie sénonienne du département de l’Yonne. Bulletin de la Société des Sciences historiques et naturelles de l’Yonne 67, 372.Google Scholar
Vaughan, T. W. & Cole, W. S. 1936. New Tertiary Foraminifera of the genera Operculina and Operculinoides from North America and the West Indies. Proceedings of the United States National Museum 83 (2996), 487–96.Google Scholar
Villier, L. 2001. Systématique des Asteroidea (Echinodermata) du Campanien et du Maastrichtien de Tercis les Bains (Landes, France). In The Campanian-Maastrichtian Stage Boundary. Characterisation at Tercis les Bains (France) and correlation with Europe and other continents (ed. Odin, G. S.), pp. 582611. Amsterdam: Elsevier.Google Scholar
Weiss, M. P. 1994. Oligocene limestones of Antigua, West Indies: Neptune succeeds Vulcan. Caribbean Journal of Science 30, 129.Google Scholar
Wienberg Rasmussen, H. 1945. Observations of the asteroid fauna of the Danian. Meddelelser frå Dansk Geologisk Forening 10 (for 1944), 417–26.Google Scholar
Wienberg Rasmussen, H. 1950. Cretaceous Asteroidea and Ophiuroidea with special reference to the species found in Denmark. Danmarks Geologiske Undersøgelse, II, Raekke 77, 134 pp.Google Scholar
Wright, R. M. & Robinson, E. (eds) 1993. Biostratigraphy of Jamaica. Geological Society of America, Memoir no. 182, xi+492 pp.CrossRefGoogle Scholar
Wright, C. W. & Smith, A. B. 1987. Echinoderms. In Palaeontological Association Field Guides to Fossils, Fossils of the Chalk (eds Owen, H. G. & Smith, A. B.), 201–37. London: Palaeontological Association.Google Scholar