Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T13:12:30.079Z Has data issue: false hasContentIssue false

Albian syndepositional block rotation and its geological consequences, Basque–Cantabrian Basin (western Pyrenees)

Published online by Cambridge University Press:  02 May 2013

LUIS MIGUEL AGIRREZABALA*
Affiliation:
Estratigrafia eta Paleontologia Saila, Euskal Herriko Unibertsitatea UPV/EHU, 644 PK, 48080 Bilbo, Spain
JAUME DINARÈS-TURELL
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia. Via di Vigna Murata 605, 00143 Roma, Italy
*
Author for correspondence: [email protected]

Abstract

Stratigraphic, structural, palaeocurrent and palaeomagnetic analyses of Upper Albian deep-water deposits in and around the Deba block (Northern Iberia) are presented. Results indicate an anticlockwise vertical-axis rotation of this block by 35° during a maximum time span of c. 1 Ma (Late Albian intra-C. auritus ammonite Subzone). This Albian syndepositional block rotation is interpreted to be the consequence of the coeval activity of conjugate major sinistral strike-slip faults and minor (antithetic) dextral strike-slip faults, which border the Deba block. On the base of conservative estimations, a minimum block-rotation rate of 35° Ma−1 and a sinistral strike-slip rate of 1.2 km Ma−1 are calculated. As a consequence of the interaction of the rotated Deba block with adjacent non-rotated blocks, its corners experienced coeval transpressive (NW and SE corners) and transtensional deformations (SW and, possibly, NE corners). At the transtensional SW corner, two domal high-reflective seismic structures have been recorded and interpreted as high-level magmatic laccoliths. These magmatic intrusions triggered the development of a mineralizing hydrothermal system, which vented to the Late Albian seafloor warm to hot hydrocarbon-rich fluids. Vented hydrocarbon was generated from Albian organic-rich sediments by contact alteration with hydrothermal fluids.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adiyaman, O. & Chorowicz, J. 2002. Late Cenozoic tectonics and volcanism in the northwestern corner of the Arabian Plate; a consequence of the strike-slip Dead Sea fault zone and the lateral escape of Anatolia. Journal of Volcanology and Geothermal Research 117, 327–45.CrossRefGoogle Scholar
Agirrezabala, L. M. 2009. Mid-Cretaceous hydrothermal vents and authigenic carbonates in a transform margin, Basque-Cantabrian Basin (western Pyrenees): a multidisciplinary study. Sedimentology 56, 969–96.Google Scholar
Agirrezabala, L. M. & Bodego, A. 2005. Interbedded mudstone slope and basin-floor sandy deposits in the Ondarroa turbidite system (Albian, Basque-Cantabrian Basin). Geogaceta 38, 83–6.Google Scholar
Agirrezabala, L. M., Dorronsoro, C. & Permanyer, A. 2008. Geochemical correlation of pyrobitumen fills with host mid-Cretaceous Black Flysch Group (Basque-Cantabrian Basin, western Pyrenees). Organic Geochemistry 39, 1185–8.Google Scholar
Agirrezabala, L. M. & García-Mondéjar, J. 1992. Tectonic origin of carbonate depositional sequences in a strike-slip setting (Aptian, Northern Iberian). Sedimentary Geology 81, 163–72.Google Scholar
Agirrezabala, L. M. & García-Mondéjar, J. 1994. A coarse-grained turbidite system with morphotectonic control (middle Albian, Ondarroa, North Iberia). Sedimentology 41, 383407.CrossRefGoogle Scholar
Agirrezabala, L. M. & García-Mondéjar, J. 2001 a. Kinematic indicators and mineralization on the Elgoibar fault (Basque-Cantabrian Basin). Geogaceta 30, 710.Google Scholar
Agirrezabala, L. M. & García-Mondéjar, J. 2001 b. Deep-water fallout tephra deposits in the Black Flysch of Deba (Upper Albian, Basque-Cantabrian Basin). Geotemas 3, 123–6.Google Scholar
Agirrezabala, L. M., Kiel, S., Blumenberg, M., Schäfer, N. et al. 2013. Outcrop analogues of pockmarks and associated methane-seep carbonates: a case study from the Lower Cretaceous (Albian) of the Basque-Cantabrian Basin, western Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology, published online 5 December 2012. doi: 10.1016/j.palaeo.2012.11.020.CrossRefGoogle Scholar
Agirrezabala, L. M., Owen, H. G. & García-Mondéjar, J. 2002. Syntectonic deposits and punctuated limb rotation in an Albian submarine transpressional fold (Mutriku village, Basque-Cantabrian basin, northern Spain). Geological Society of America Bulletin 114, 281–97.Google Scholar
Agirrezabala, L. M., Owen, H. G. & García-Mondéjar, J. 2003. Errata. Syntectonic deposits and punctuated limb rotation in an Albian submarine transpressional fold (Mutriku village, Basque-Cantabrian basin, northern Spain). Geological Society of America Bulletin 115, 765–8.Google Scholar
Alonso, J. L. 1989. Fold reactivation involving angular unconformable sequences: theoretical analysis and natural examples from the Cantabrian Zone (Northwest Spain). Tectonophysics 170, 5777.Google Scholar
Aranburu, A., Fernández-Mendiola, P. A., López-Horgue, M. & García-Mondéjar, J. 2002. Syntectonic hydrothermal calcite in a faulted carbonate platform margin (Albian of Jorrios, northern Spain). Sedimentology 49, 875–90.Google Scholar
Aranguren, A., Tubia, J. M., Bouchez, J. L. & Vigneresse, J. L. 1996. The Guitiriz Granite, Variscan Belt of northern Spain; extension-controlled emplacement of magma during tectonic scape. Earth and Planetary Science Letters 139, 165–76.Google Scholar
Aydin, A., Schultz, R. A. & Campagna, D. 1990. Fault-normal dilatation pull-apart-basins: implications for relationship between strike-slip fault and volcanic activity. In Active and Recent Strike-slip Tectonics (eds Boccaletti, M. & Nur, A.), pp. 4552. Annales Tectonicae Special Issue.Google Scholar
Azambre, B. & Rossy, M. 1976. Le magmatisme alcalin d'âge crétacé dans les Pyrénées occidentales de l'Arc basque; ses relations avec le métamorphisme et la tectonique. Bulletin de la Société Géologique de France 18, 1725–8.Google Scholar
Breitkreuz, C. & Mock, A. 2004. Are laccolith complexes characteristic of trantensional basin systems? Examples from the Permo-Carboniferous of Central Europa. In Physical Geology of High-level Magmatic Systems (eds Breitkreuz, C. & Petford, N.), pp. 1331. Geological Society of London, Special Publications no. 234.Google Scholar
Busby, C. J., Bassett, K. N., Steiner, M. B. & Riggs, N. R. 2005. Climatic and tectonic controls on Jurassic intra-arc basins related to northward drift of North America. Geological Society of America Special Paper 393, 359–76.Google Scholar
Cámara, P. 1997. The Basque-Cantabrian basin's Mesozoic tectono-sedimentary evolution. Mémoires de la Société Géologique de France 171, 187–91.Google Scholar
Castañares, L. M., Robles, S., Gimeno, D. & Vicente-Bravo, J. C. 2001. The submarine volcanic system of the Errigoiti Formation (Albian-Santonian of the Basque-Cantabrian Basin, northern Spain): stratigraphic framework, facies and sequences. Journal of Sedimentary Research, 71, 318–33.Google Scholar
Chetty, T. R. K. 1995. Significance of the block rotation model in tectonics and mineralization in Precambrian terrains – An example from the South Indian shield. Journal of Geodynamics 20, 255–66.CrossRefGoogle Scholar
Choukroune, P. 1992. Tectonic evolution of the Pyrenees. Annual Review of Earth and Planetary Sciences 20, 143–58.Google Scholar
Choukroune, P. & Mattauer, M. 1978. Tectonique des plaques et Pyrénées: sur le fonctionnement de la faille transformante nord-pyrénéenne; comparaisons avec des modèles actuels. Bulletin de la Société Géologique de France 20, 689700.Google Scholar
Christie-Blick, N. & Biddle, K. T. 1985. Deformation and basin formation along strike-slip faults. In Strike-slip Deformation, Basin Formation, and Sedimentation (eds Biddle, K. T. & Christie-Blick, N.), pp. 134. Society of Economic Paleontologists and Mineralogists, Special Publications no. 37.Google Scholar
Corry, C. E. 1988. Laccoliths: Mechanics of Emplacement and Growth. Geological Society of America, Special Paper 220, 110 pp.Google Scholar
Demarest, H. H. Jr. 1983. Error analysis for the determination of tectonic rotation from paleomagnetic data. Journal of Geophysical Research 88, 4321–8.Google Scholar
EEE 2003. 1:25000 Eskalako Euskal Herriko Mapa Geologikoa. Eusko Jaurlaritza, Bilbo. CD-ROM.Google Scholar
Einsele, G., Gieskes, J. M., Curray, J., Moore, D. M. et al. 1980. Intrusion of basaltic sills into highly porous sediments, and resulting hydrothermal activity. Nature 283, 441–5.Google Scholar
Ellwood, B. B., Chrzanowski, T. H., Hrouda, F., Long, G. J. et al. 1988. Siderite formation in anoxic deep-sea sediments: A synergetic bacteria controlled process with important implications in paleomagnetism. Geology 16, 980–2.Google Scholar
Engeser, T. & Schwentke, W. 1986. Towards a new concept of the tectogenesis of the Pyrenees. Tectonophysics 129, 233–42.Google Scholar
Fernández-Mendiola, P. A. & García-Mondéjar, J. 2003. Carbonate platform growth influenced by contemporaneous basaltic intrusion (Albian of Larrano, Spain). Sedimentology 50, 961–78.CrossRefGoogle Scholar
Freund, R. 1974. Kinematics of transform and transcurrent faults. Tectonophysics 21, 93134.Google Scholar
Ganino, C. & Arndt, N. T. 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–6.CrossRefGoogle Scholar
García-Mondéjar, J. 1989. Strike-slip subsidence of the Basque-Cantabrian Basin of Northern Spain and its relationship to Aptian-Albian opening of Bay of Biscay. In Extensional Tectonics and Stratigraphy of the North Atlantic Margins (eds Tankard, A. J. & Balkwill, H. R.), pp. 395409. American Association of Petroleum Geologists, Memoir no. 46.Google Scholar
García-Mondéjar, J., Agirrezabala, L. M., Aranburu, A., Fernández-Mendiola, P. A. et al. 1996. The Aptian-Albian tectonic pattern of the Basque-Cantabrian Basin (Northern Spain). Geological Journal 31, 1345.Google Scholar
García-Mondéjar, J., Fernández-Mendiola, P. A., Agirrezabala, L. M., Aranburu, A. et al. 2004 a. Extensión del Aptiense-Albiense en la Cuenca Vasco-Cantábrica. In Geología de España (ed. Vera, J. A.), pp. 340–3. Sociedad Geológica de España-Instituto Geológico y Minero de España.Google Scholar
García-Mondéjar, J., Fernández-Mendiola, P. A., Agirrezabala, L. M., Aranburu, A. et al. 2004 b. El Aptiense-Albiense de la Cuenca Vasco-Cantábrica. In Geología de España (ed Vera, J. A.), pp. 291–6. Sociedad Geológica de España-Instituto Geológico y Minero de España.Google Scholar
Gil, P. P., Yusta, I., Herrero, J. M. & Velasco, F. 1986. Mineralogía y geoquímica de las concreciones carbonatadas del Flysch Negro (Albiense sup.-Cenomaniense inf.) de Armintza (Vizcaya). Boletín de la Sociedad Española de Mineralogía 9, 347–56.Google Scholar
Gómez, M., Vergés, J. & Riaza, C. 2002. Inversion tectonics of the northern margin of the Basque Cantabrian Basin. Bulletin de la Société Géologique de France 173, 449–59.Google Scholar
Grippo, A., Fischer, A., Hinnov, L. A., Herbert, T. D. et al. 2004. Cyclostratigraphy and chronology of the Albian stage (Piobicco core, Italy). In Cyclostratigraphy: An Essay of Approaches and Case Histories (eds D'Argenio, B., Fischer, A. G., Premoli Silva, I., Weissert, H. & Ferreri, V.), pp. 5781. Society of Economic Paleontologists and Mineralogists, Special Publication no. 81.Google Scholar
Gross, M. R., Becker, A. & Gutiérrez-Alonso, G. 1997. Transfer of displacement from multiple slip zones to a single detachment due to rigid block rotation: example from the Dead Sea Rift, Israel. Geological Society of America Bulletin 109, 1021–35.Google Scholar
Horns, D. M. & Verosub, K. L. 1995. Investigation of late Neogene vertical axis rotation and remagnetization in central coastal California. Journal of Geophysical Research 100, 3873–84.CrossRefGoogle Scholar
Hudec, M. R. & Jackson, M. P. A. 2006. Advance of allochthonous salt sheets in passive margins and orogens. American Association of Petroleum Geologists Bulletin 90, 1535–64.Google Scholar
Hudec, M. R. & Jackson, M. P. A. 2007. Terra infirma: understanding salt tectonics. Earth Science Reviews 82, 128.Google Scholar
Iriarte, E. 2005. Tectosedimentary phases along the Leitza wrench fault related to Cretaceous Iberia/Europe plate boundary evolution. Tectonics of Strike-slip Restraining & Releasing Bends in Continental and Oceanic Setting. Conference abstract book. The Geological Society of London.Google Scholar
Jammes, S., Manatschal, G., Lavier, L. & Masini, E. 2009. Tectonosedimentary evolution related to extreme crustal thinning ahead of a propagating ocean: example of the western Pyrenees. Tectonics 28, TC4012, doi:10.1029/2008TC002406.Google Scholar
Jamtveit, B., Svensen, H., Podladchikov, Y. & Planke, S. 2004. Hydrothermal vent complexes associated with sill intrusions in sedimentary basins. In Physical Geology of High-Level Magmatic Systems (eds Breitkreuz, C. & Petford, N.), pp. 233–41. Geological Society of London, Special Publications no. 234.Google Scholar
Johnson, N. M., Opdyke, N. D., Woodard, G. D., Zeitler, P. K. et al. 1983. Rates of late Cenozoic tectonism in the Vallecito-Fish Creek basin, western Imperial Valley, California. Geology 11, 664–7.2.0.CO;2>CrossRefGoogle Scholar
Jordan, P. G. 1991. Development of asymmetric shale pull-aparts in evaporite shear zones. Journal of Structural Geology 13, 399409.Google Scholar
King, G., Oppenheimer, D. & Amelung, F. 1994. Block versus continuum deformation in the western United States. Earth and Planetary Science Letters 128, 5564.Google Scholar
Larrasoaña, J. C., Parés, J. M., del Valle, J. & Millán, H. 2002. Triassic paleomagnetism from the Western Pyrenees revisited: implications for the Iberian-Eurasian Mesozoic plate boundary. Tectonophysics 362, 161–82.Google Scholar
López-Horgue, M. A., Iriarte, E., Schröder, S., Fernández-Mendiola, P. A. et al. 2010. Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón Valley, Basque Cantabrian Basin, Northern Spain. Marine and Petroleum Geology 27, 1069–92.Google Scholar
Luyendyk, B. P., Kamerling, M. J. & Terres, R. 1980. Geometric model for Neogene crustal rotations in southern California. Geological Society of America Bulletin 91, 211–17.Google Scholar
Luyendyk, B. P., Kamerling, M. J., Terres, R. & Hornafius, J. S. 1985. Simple shear of southern California during Neogene time suggested by paleomagnetic declinations. Journal of Geophysical Research 90, 12454–66.CrossRefGoogle Scholar
Marra, F. 2001. Strike-slip faulting and block rotation: a possible triggering mechanism for lava flows in the Alban Hills? Journal of Structural Geology 23, 127–41.Google Scholar
Mattei, M., Cifelli, F., Muttoni, G., Zanchi, A. et al. 2012. Neogene block rotation in central Iran: Evidence from paleomagnetic data. Geological Society of America Bulletin 124, 943–56.Google Scholar
McCaffrey, K. J. W. & Petford, N. 1997. Are granitic intrusions scale invariant? Journal of the Geological Society of London 154, 14.Google Scholar
McFadden, P. L. & Reid, A. B. 1982. Analysis of palaeomagnetic inclination data. Geophysical Journal of the Royal Astronomical Society 69, 307–19.Google Scholar
McKenzie, D. & Jackson, J. 1986. A block model of distributed deformation by faulting. Journal of the Geological Society of London 143, 349353.Google Scholar
Montadert, L., Winnock, E., Deltiel, J. R. & Grau, G. 1974. Continental margins of Galicia-Portugal and Bay of Biscay. In Geology of Continental margins (eds Burk, C. A. & Drake, C. L.), pp. 323–42. Springer Verlag.Google Scholar
Nicholson, C., Seeber, L., Williams, P. & Sykes, L. R. 1986. Seismic evidence for conjugate slip and block rotation within the San Andreas Fault System, Southern California. Tectonics 5, 629–48.Google Scholar
Ogg, J. G., Agterberg, F. P. & Gradstein, F. M. 2004. The Cretaceous Period. In A Geologic Time Scale 2004 (eds Gradstein, F. M., Ogg, J. J., & Smith, A. G.), pp. 344–83. Cambridge University Press.Google Scholar
Olivet, J. L. 1996. Kinematics of the Iberian Plate. Bulletin des Centres de Recherche Exploration-Production Elf Aquitaine 20, 131–95.Google Scholar
Pan, Y. X., Zhu, R. X. & Banerjee, S. K. 2000. Rock magnetic properties related to thermal treatment of siderite: Behavior and interpretation. Journal of Geophysical Research 105, 783–94.CrossRefGoogle Scholar
Peacock, D. C. P., Anderson, M. W., Morris, A. & Randall, D. E. 1998. Evidence for the importance of “small” faults on block rotation. Tectonophysics 299, 113.Google Scholar
Pedreira, D., Pulgar, J. A., Gallart, J. & Díaz, J. 2003. Seismic evidence of Alpine crustal thickening and wedging from the western Pyrenees to the Cantabrian Mountains (north Iberia). Journal of Geophysical Research 108 (B4), 2204. doi:10.1029/2001JB001667.Google Scholar
Pedreira, D., Pulgar, J. A., Gallart, J. & Torné, M. 2007. Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research 112, B12405. doi:10.1029/2007JB005021.Google Scholar
Prescott, W. H., Lisowscki, M. & Savage, J. C. 1981. Geodetic measurement of crustal deformation on the San Andreas, Hayward, and Calaveras faults near San Francisco, California. Journal of Geophysical Research 86, 10853–69.Google Scholar
Pueyo, E. L., Parés, J. M., Millán, H. & Pocoví, A. 2003. Conical folds and apparent rotations in paleomagnetism (a case study in the Southern Pyrenees). Tectonophysics 362, 345–66.Google Scholar
Puigdefàbregas, C. & Souquet, P. 1986. Tecto-sedimentary cycles and depositional sequences of the Mesozoic and Tertiary from the Pyrenees. Tectonophysics 129, 173203.Google Scholar
Rat, P. 1988. The Basque-Cantabrian basin between the Iberian and European plates. Some fact but still many problems. Revista de la Sociedad Geológica de España 1, 327–48.Google Scholar
Rat, P., Amiot, M., Feuillée, P., Floquet, M. et al. 1983. Vue sur le Crétacé Basco-Cantabrique et Nord-Ibérique. Une marge et son arrière-pays, ses environments sédimentaires. Mémoires Géologiques de l'Université de Dijon 9, 191 pp.Google Scholar
Ron, H., Freund, R. & Garfunkel, Z. 1984. Block rotation by strike-slip faulting: structural and paleomagnetic evidence. Journal of Geophysical Research 89, 6256–70.Google Scholar
Rossy, M. 1988. Contribution a l'étude du magmatisme Mésozoique du domaine Pyrénnéen. PhD thesis, Université de Franche-Comté. Published thesis.Google Scholar
Rushdi, A. I. & Simoneit, B. R. T. 2002. Hydrothermal alteration of organic matter in sediments of the Northeastern Pacific Ocean: Part 1. Middle Valley, Juan de Fuca Ridge. Applied Geochemistry 17, 1401–28.Google Scholar
Sapiie, B. & Cloos, M. 2004. Strike-slip faulting in the core of the Central Range of west New Guinea: Ertsberg Mining District, Indonesia. Geological Society of America Bulletin 116, 277–93.CrossRefGoogle Scholar
Schott, J. J. & Parés, J. M. 1996. Paleomagnetisme. In Synthèses Géologique et Gèophysique des Pyrénées, Volume 1 (eds Barnolas, A., Chiron, J. C. & Guérangé, B.), pp. 41–9. Bureau de Recherches Géologiques et Minières-Instituto Tecnológico y Geominero de España.Google Scholar
Schott, J. J. & Peres, A. 1988. Paleomagnetism of Permo-Triassic red beds in the western Pyrenees: evidence for strong clockwise rotations of the Paleozoic units. Tectonophysics 156, 7588.Google Scholar
Schultz-Ela, D. D. & Jackson, M. P. A. 1996. Relation of subsalt structures to suprasalt structures during extension. American Association of Petroleum Geologists Bulletin 80, 1896–924.Google Scholar
Seeber, L. & Bogen, N. L. 1985. Block rotation along the southern San Jacinto fault zone. Eos (Transactions, American Geophysical Union) 66, p. 953.Google Scholar
Şengör, A. M., Görür, N. & Şaroğlu, F. 1985. Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study. In Strike-Slip Deformation, Basin Formation, and Sedimentation (eds Biddle, K. T. & Christie-Blick, N.), pp. 227–64. Society of Economic Paleontologists and Mineralogists Special Publication no. 37.Google Scholar
Shaw, J., Johnston, S T., Gutiérrez-Alonso, G. & Weil, A. B. 2012. Oroclines of the Variscan orogen of Iberia: paleocurrent analysis and paleogeographic implications. Earth and Planetary Science Letters 329–330, 6070.CrossRefGoogle Scholar
Simoneit, B. R. T. & Lonsdale, P. F. 1982. Hydrothermal petroleum in mineralised mounds at the seabed of Guaymas Basin. Nature 295, 198202.Google Scholar
Souquet, P., Debroas, E. J., Boirie, J. M., Pons, P. et al. 1985. Le Groupe du Flysch Noir (Albo-Cénomanien) dans les Pyrénées. Bulletin des Centres de Recherche Exploration-Production Elf Aquitaine 9, 183252.Google Scholar
Svensen, H., Planke, S., Malthe-Sørenssen, A., Jamtveit, B. et al. 2004. Release of methane from a volcanic basin as a mechanism for the initial Eocene global warming. Nature 429, 542–5.Google Scholar
Svensen, H., Planke, S., Polozov, A., Schmidbauer, N. et al. 2009. Siberian gas venting and the end-Permian environmental crisis. Earth and Planetary Science Letters 277, 490500.Google Scholar
Sylvester, A. G. 1988. Strike-slip faults. American Association of Petroleum Geologists Bulletin 100, 1666–703.Google Scholar
Talbot, C. J. 1993. Spreading of salt structures in the Gulf of Mexico. Tectonophysics 228, 151–66.Google Scholar
Tatar, O., Piper, J. D. A., Gürsoy, H., Heimann, A. et al. 2004. Neotectonic deformation in the transition zone between the Dead Sea Transform and the East Anatolian Fault Zone, Southern Turkey: a paleomagnetic study of the Karasu Rift Volcanism. Tectonophysics 385, 1743.Google Scholar
Tchalenko, J. S. 1970. Similarities between shear zones of different magnitudes. Geological Society of America Bulletin 81, 1625–40.Google Scholar
Thompson, K. 2007. Determining magma flow in sills, dykes and laccoliths and their implications for sill emplacement mechanisms. Bulletin of Volcanology 70, 183201.CrossRefGoogle Scholar
Tibaldi, A., Pasquarè, F. & Tormey, D. 2010. Volcanism in reverse and strike-slip fault settings. In New Frontiers in Integrated Solid Earth Science (eds Cloetingh, S. & Negendank, J.), pp. 315–48. Springer-Verlag.Google Scholar
Tikoff, B. & Teyssier, C. 1992. Crustal-scale, en echelon “P-shear” tensional bridges: a possible solution to the batholithic room problem. Geology 20, 927–30.Google Scholar
Vandenberg, J. 1980. New paleomagnetic data from the Iberian Peninsula. Geologie en Mijnbouw 59, 4960.Google Scholar
Van der Voo, R. 1969. Paleomagnetic evidence for the rotation of the Iberian Peninsula. Tectonophysics 7, 556.Google Scholar
Van der Voo, R. 1993. Paleomagnetism of the Atlantic, Tethys and Iapetus Oceans. Cambridge University Press, 411 pp.Google Scholar
Ventura, G. 1994. Tectonics, structural evolution and caldera formation on Vulcano Island (Aeolian Archipielago, southern Tyrrhenian Sea). Journal of Volcanology and Geothermal Research 60, 207–24.Google Scholar
Walcott, R. I. 1984. The kinematics of the plate boundary zone through New Zealand: a comparison of short- and long-term deformation. Geophysical Journal of the Royal Astronomical Society 79, 613–33.Google Scholar