Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T01:34:52.314Z Has data issue: false hasContentIssue false

Age and geochemistry of the Zhaheba ophiolite complex in eastern Junggar of the Central Asian Orogenic Belt (CAOB): implications for the accretion process of the Junggar terrane

Published online by Cambridge University Press:  18 April 2016

XIAN-TAO YE
Affiliation:
Chinese Academy of Geological Sciences, Beijing, 100037, China Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China
CHUAN-LIN ZHANG*
Affiliation:
Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China
HAI-BO ZOU
Affiliation:
Department of Geosciences, Auburn University, Auburn, 36849-5305, USA
CHUN-YAN YAO
Affiliation:
Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China
YONG-GUAN DONG
Affiliation:
Nanjing Institute of Geology and Mineral Resources, Nanjing 210016, China
*
Author for correspondence: [email protected]

Abstract

We report new field observations, zircon U–Pb ages and geochemical data for the discrete members of the Zhaheba ophiolite complex in northeastern Junggar of the Central Asian Orogenic Belt (CAOB) with the aim to understand the accretion process of the eastern Junggar terrane. The zircon age data reveal that the cumulates of the Zhaheba ophiolite crystallized at ~485 Ma while the volcanic sequences erupted at ~400 Ma. Thus, the volcanic sequences are not members of the Zhaheba ophiolite. Chromian spinels from the serpentinite have comparable elemental compositions to those of spinels from MORB-type ophiolites. Similarly, the rift affinity of clinopyroxene and positive zircon εHf(t) (13–20) and mantle δ18O (+5.37‰) values of the cumulates imply that the cumulates crystallized from primitive magmas derived from a depleted mantle source. Elemental and Nd isotopic compositions indicate that the basalts in the Zhaheba area were derived from partial melting of a mantle wedge metasomatized by adakitic melts and/or subduction-related fluids. The data presented in this contribution, together with previous studies, indicate that the Zhaheba–Almantai and Kelameili ophiolites were MORB-type, which implies that there were at least two mid-ocean ridges during Ordovician to early Devonian times in the Junggar Ocean. In the earlier stage, intra-oceanic subduction led to the formation of the intra-oceanic arc, and then the Kelameili ophiolite accreted to an intra-oceanic accretionary wedge. In the later stage, the Zhaheba–Almantai ophiolite accreted to the accretionary wedge along the southern margin of the Iritish suture zone during the roll-back of the subduction zone from north to south.

Type
Original Articles
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arai, S. 1994. Characterization of spinel peridotites by olivine–spinel compositional relationships: review and interpretation. Chemical Geology 113, 191204.CrossRefGoogle Scholar
Barnes, S. J. & Roeder, P. L. 2001. The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology 42, 2279–302.CrossRefGoogle Scholar
Castillo, P. R., Rigby, S. J. & Solidum, R. U. 2007. Origin of high field strength element enrichment in volcanic arcs: geochemical evidence from the Sulu Arc, southern Philippines. Lithos 97, 271–88.CrossRefGoogle Scholar
Castillo, P. R., Solidum, R. U. & Punongbayan, R. S. 2002. Origin of high field strength element enrichment in the Sulu Arc, southern Philippines, revisited. Geology 30, 707–10.2.0.CO;2>CrossRefGoogle Scholar
Cawood, P. A., Kröner, A., Collins, W. J., Kusky, T. M., Mooney, W. D. & Windley, B. F. 2009. Accretionary orogens through Earth history. In Earth Accretionary Systems in Space and Time (eds Cawood, P. A. & Kröner, A.), pp. 136. Geological Society of London, Special Publication no. 318.Google Scholar
Chen, B. & Jahn, B. M. 2002. Geochemical and isotopic studies of the sedimentary and granitic rocks of the Altai orogen of northwest China and their tectonic implications. Geological Magazine 139, 113.CrossRefGoogle Scholar
Cloos, M. 1993. Lithosphere buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geological Society of America Bulletin 105, 715–37.2.3.CO;2>CrossRefGoogle Scholar
Coleman, R. G. 1977. Ophiolites. New York: Springer-Verlag, 220 pp.CrossRefGoogle Scholar
Defant, M. J. & Drummond, M. S. 1993. Mount St. Helens: potential example of the partial melting of the subducted lithosphere in a volcanic arc. Geology 21, 547–50.2.3.CO;2>CrossRefGoogle Scholar
Defant, M. J., Jackson, T. E. & Drummond, M. S. 1992. The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of Geological Society, London 149, 569–79.CrossRefGoogle Scholar
Dick, H. J. B. & Bullen, T. 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology 86, 5476.CrossRefGoogle Scholar
Dilek, Y. & Flower, M. F. J. 2003. Arc-trench roll-back and forearc accretion (2): a model template for ophiolites in Albania, Cyprus, and Oman. In Ophiolites in Earth History (eds Dilek, Y. & Robinson, R. T.), pp. 4368. Geological Society of London, Special Publication no. 218.Google Scholar
Dilek, Y. & Furnes, H. 2011. Ophiolite genesis and global tectonics: geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geological Society of America Bulletin 123, 387411.CrossRefGoogle Scholar
Fang, A. M., Wang, S. G., Zhang, J. M., Zang, M., Fang, J. H. & Hu, J. M. 2015. The U–Pb ages of the zircons from the gabbro in the Kalamaili ophiolite, North Xinjiang and its tectonic significances. Chinese Journal of Geology 50, 140–54 (in Chinese with English abstract).Google Scholar
Franz, L. & Wirth, R. 2000. Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismark Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contributions to Mineralogy and Petrology 140, 283–95.CrossRefGoogle Scholar
Furnes, H., Pedersen, R. B. & Hertogen, J. 1991. Magma development of the Leka ophiolite complex, central Norwegian Caledonides. Lithos 27, 259–77.CrossRefGoogle Scholar
Geng, J. Z., Li, H. K., Zhang, J. & Zhang, Y. Q. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China 30, 1508–13 (in Chinese with English abstract).Google Scholar
Hastie, A. R., Mitchell, S. F., Kerr, A. C., Minifie, M. J. & Millar, I. L. 2011. Geochemistry of rare high-Nb basalt lavas: are they derived from a mantle wedge metasomatised by slab melts? Geochimica et Cosmochimica Acta 75, 5049–72.CrossRefGoogle Scholar
Hellebrand, E., Snow, J. E., Dick, H. J. B. & Hofmann, A. W. 2001. Coupled major and trace elements as indicators of the extent of melting in the mid-ocean-ridge peridotites. Nature 410, 677–81.CrossRefGoogle ScholarPubMed
Hellebrand, E., Snow, J. E. & Mühe, R. 2002. Mantle melting beneath Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chemical Geology 182, 227–35.CrossRefGoogle Scholar
Hofmann, A. W. & Jochum, K.P. 1996. Source characteristics derived from very incompatible trace elements in Mauna Loa and Mauna Kea basalts, Hawaii Scientific Drilling Project. Journal of Geophysical Research: Solid Earth (1978–2012) 101, 11831–9.CrossRefGoogle Scholar
Hollings, P. & Kerrich, R. 2000. An Archean arc basalt-Nb-enriched basalt-adakite association: the 2.7 Ga confederation assemblage of the Birch-Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology 139, 208–26.CrossRefGoogle Scholar
Huang, G. Niu, G. Z., Wang, X. L., Guo, J. & Yu, F. 2012. Formation and emplacement age of Karamaili ophiolite: LA-ICP-MS zircon U–Pb age evidence from the diabase and tuff in eastern Junggar, Xinjiang. Geological Bulletin of China 31, 1267–78 (in Chinese with English abstract).Google Scholar
Hu, C. B., Liao, Q. A., Fan, G. M., Chen, S., Wu, W. W., Tian, J. & Wang, F. M. 2014. Discovery of MOR-type ophiolites from the Dishuiquan region, eastern Junggar (in Chinese). Chinese Science Bulletin (Chinese Version) 59, 2213–22.Google Scholar
Jahn, B. M., Wu, F.Y. & Chen, B. 2000. Granitoids of the Central Asian Orogenic Belt and continental growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences 91, 181–93.CrossRefGoogle Scholar
Jan, M. Q. & Windley, B. F. 1990. Chromian spinel–silicate chemistry in ultramafic rocks of the Jijal Complex, northwest Pakistan. Journal of Petrology 31, 6771.CrossRefGoogle Scholar
Jian, P., Liu, D. Y., Zhang, Q., Zhang, F. Q., Shi, Y. R., Shi, G. H., Zhang, L. Q. & Tao, H. 2003. SHRIMP dating of ophiolite and leucogranitic rocks within ophiolite. Earth Science Frontier 10, 439–56 (in Chinese with English abstract).Google Scholar
Kamenetsky, V. S., Crawford, A. J. & Meffre, S. 2001. Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology 42, 655–71.CrossRefGoogle Scholar
Keppler, H. 1996. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 380, 237–40.CrossRefGoogle Scholar
Lagabrielle, Y., Guivel, C., Maury, R., Bourgois, J., Fourcade, S. & Martin, H. 2000. Magmatic-tectonic effects of high thermal regime at the site of active ridge subduction: the Chile triple junction model. Tectonophysics 326, 255–68.CrossRefGoogle Scholar
Li, X. H., Li, W. X., Li, Q. L., Wang, X. C., Liu, Y. & Yang, Y. H. 2010 a. Petrogenesis and tectonic significance of the 850 Ma Gangbian alkaline complex in South China: evidence from in-situ zircon U–Pb and Hf–O isotopes and whole-rock geochemistry. Lithos 114, 115.CrossRefGoogle Scholar
Li, X. H., Liu, D. Y., Sun, M., Li, W. X., Liang, X. R. & Liu, Y. 2004. Precise Sm–Nd and U–Pb isotopic dating of the super-giant Shizhuyuan polymetallic deposit and its host granite, SE China. Geological Magazine 141, 225–31.CrossRefGoogle Scholar
Li, X. H., Long, W. G., Li, Q. L., Liu, Y., Zheng, Y. F., Yang, Y. H., Chamberlain, K. R., Wan, D. F., Guo, C. H., Wang, X. C. & Tao, H. 2010 b. Penglai zircon megacryst: a potential new working reference for microbeam analysis of Hf–O isotopes and U–Pb age. Geostandards and Geoanalytical Research 34, 117–34.CrossRefGoogle Scholar
Li, X. H., Tang, G. Q., Gong, B., Yang, Y. H., Hou, K. J., Hu, Z. C., Li, Q. L., Liu, Y. & Li, W. X. 2013. Qinghu zircon: a working reference for microbeam analysis of U–Pb age and Hf and O isotopes. Chinese Science Bulletin 58, 4647–54.CrossRefGoogle Scholar
Lister, G. & Forster, M. 2009. Tectonic mode switches and the nature of orogenesis. Lithos 113, 274–91.CrossRefGoogle Scholar
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. & Chen, H. H. 2010. Reappraisement and refinement of zircon U–Pb isotope and trace element analyses by LA-ICP-MS. Chinese Science Bulletin 55, 1535–46.CrossRefGoogle Scholar
Ludwig, K. R. 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 4, 73 pp.Google Scholar
Luo, J., Xiao, W. J., Wakabayashi, J., Han, C. M., Zhang, J. E., Wan, B., Ao, S. J., Zhang, Z. Y., Tian, Z. H., Song, D. F. & Chen, Y. C. 2015. The Zhaheba ophiolite complex in Eastern Junggar (NW China): long lived supra-subduction zone ocean crust formation and its implications for the tectonic evolution in southern Altaids. Gondwana Research, published online 6 May 2015. doi: 10.1016/j.gr.2015.04.004.Google Scholar
Miyashiro, A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science 274, 32355.CrossRefGoogle Scholar
Monnier, C., Girardeau, J., Maury, R. & Cotten, J. 1995. Back-arc basin origin for the East Sulawesi ophiolite (eastern Indonesia). Geology 23, 851–4.2.3.CO;2>CrossRefGoogle Scholar
Nicolas, A. 1989. Structure of Ophiolites and Dynamics of Oceanic Lithosphere. Dordrecht, the Netherlands: Kluwer Academic Publishers, 367 pp.CrossRefGoogle Scholar
Niu, Y. L. 1997. Mantle melting and melt extraction processes beneath ocean ridges: evidence from abyssal peridotites. Journal of Petrology 38, 1047–74.CrossRefGoogle Scholar
Niu, H. C., Shan, Q., Yu, X. Y., Zhang, B., Luo, Y. & Yang, W. B. 2009 a. Geochemistry of Nb-enriched basalt and its significance in Zaheba ophiolite mélange. Acta Petrologica Sinica 25, 916–24 (in Chinese with English abstract).Google Scholar
Niu, H. C., Shan, Q., Zhang, B., Luo, Y., Yang, W. B. & Yu, X. Y. 2009 b. Discovery of garnet amphibolite in Zaheba ophiolitic mélange, eastern Junggar, NW China. Acta Petrologica Sinica 25, 1484–91 (in Chinese with English abstract).Google Scholar
Niu, H. C., Shan, Q., Zhang, H. Y. & Yu, X. Y. 2007. 40Ar/39Ar geochronology of the ultrahigh-pressure metamorphic quartz magnesitite in Zaheba, eastern Junggar, Xinjiang. Acta Petrologica Sinica 23, 1627–34 (in Chinese with English abstract).Google Scholar
Niu, Y. L., Gilmore, T., Mackie, S., Greig, A. & Bach, W. 2002. Mineral chemistry, whole-rock compositions, and petrogenesis of Leg 176 gabbros: data and discussion. In Proceedings of the Ocean Drilling Program, Scientific Results, vol. 176 (eds Natland, J. H., Dick, H. J. B., Miller, D. J. & Herzen, R. P. Von), pp. 160. College Station, Texas.Google Scholar
Niu, H. C., Zhang, H. Y., Shan, Q. & Yu, X. Y. 2008. Discovery of the super-silicic, super-titanic garnets in garnet-pyroxenite in Zaheba ophiolite and its geological significance. Chinese Science Bulletin 14, 2186–91.CrossRefGoogle Scholar
Oh, C. W., Rajesh, V. J., Seo, J., Choi, S. J. & Lee, J. H. 2010. Spinel compositions and tectonic relevance of the Bibong ultramafic bodies in the Hongseong collision belt, South Korea. Lithos 117, 198208.CrossRefGoogle Scholar
Ota, T., Utsunomiya, A. & Uchio, Y. 2007. Geology of the Gorny Altai subduction-accretion complex, southern Siberia: tectonic evolution of an Ediacaran-Cambrian intra-oceanic arc-trench system. Journal of Asian Earth Sciences 30, 666–95.CrossRefGoogle Scholar
Pearce, J. A. 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 100, 1448.CrossRefGoogle Scholar
Pearce, J. A. 2014. Immobile element fingerprinting of ophiolites. Elements 10, 101–8.CrossRefGoogle Scholar
Polat, A. & Kerrich, R. 2001. Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contribution to Mineralogy and Petrology 141, 3652.CrossRefGoogle Scholar
Saccani, E., Allahyari, K., Beccaluva, L. & Bianchini, G. 2013. Geochemistry and petrology of the Kermanshah ophiolite (Iran): implication for the interaction between passive rifting, oceanic accretion, and OIB-type components in the Southern Neo-Tethys Ocean. Gondwana Research 24, 392411.CrossRefGoogle Scholar
Sajona, F. G., Maury, R. G., Bellon, H., Cotton, J. & Defant, M. 1996. High field strength element enrichment of Pliocene–Pleistocene island arc basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology 37, 693726.CrossRefGoogle Scholar
Santosh, M., Shaji, E., Tsunogae, T., Ram Mohan, M., Satyanarayanan, M. & Horie, S. K. 2013. Suprasubduction zone ophiolite from Agali hill: petrology, zircon SHRIMP U–Pb geochronology, geochemistry and implications for Neoarchean plate tectonics in southern India. Precambrian Research 231, 301–24.CrossRefGoogle Scholar
Santosh, M., Xiao, W. J., Tsunogae, T., Chetty, T. R. K. & Yellappa, T. 2012. The Neoproterozoic subduction complex in southern India: SIMS zircon U–Pb ages and implications for Gondwana assembly. Precambrian Research 192–195, 190208.CrossRefGoogle Scholar
Saunders, A. D., Norry, M. J. & Tarney, J. 1991. Fluid influence on the trace element compositions of subduction zone magmas. Philosophical Transactions of the Royal Society of London 335, 377–92.Google Scholar
Schiano, P., Clocchiatti, R., Shimuzu, N., Maury, R. C., Jochum, K. P. & Hofmann, A. W. 1995. Hydrous silica-rich melts in the sub-arc mantle and their relationship with erupted arc lavas. Nature 377, 595600.CrossRefGoogle Scholar
Şengör, A. M. C., Natalin, B. A. & Burtman, V. S. 1993. Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364, 299307.CrossRefGoogle Scholar
Shen, X. M., Zhang, H. X., Wang, Q., Ma, L. & Yang, Y. H. 2014. Early Silurian (~440 Ma) adakitic, andesitic and Nb-enriched basaltic lavas in the southern Altay Range, Northern Xinjiang (western China): slab melting and implications for crustal growth in the Central Asian Orogenic Belt. Lithos 206–207, 234–51.CrossRefGoogle Scholar
Stern, R. J. 2002. Subduction zones. Reviews of Geophysics 40, 3–13–38.CrossRefGoogle Scholar
Sun, M., Long, X. P., Cai, K. D., Jiang, Y. D., Wang, B. Y., Yuan, C., Zhao, G. C., Xiao, W. J. & Wu, F. Y. 2009. Early Paleozoic ridge subduction in the Chinese Altai: insight from the abrupt change in zircon Hf isotopic compositions. Science in China Series D – Earth Sciences 52, 1345–58.CrossRefGoogle Scholar
Sun, S. S. & McDonough, W. F. 1989. Chemical and isotopic systematics of oceanic basalt: implication for mantle composition and processes. In Magmatism in the Ocean Basin (eds Saunders, A. D. & Norry, M. J.), pp. 528–48. Geological Society of London, Special Publication no. 42.Google Scholar
Sun, M., Yuan, C., Xiao, W., Long, X., Xia, X., Zhao, G., Lin, S., Wu, F. & Kroner, A. 2008. Zircon U–Pb and Hf isotopic study of gneissic rocks from the Chinese Altai: progressive accretionary history in the early to middle Palaeozoic. Chemical Geology 247, 352–83.CrossRefGoogle Scholar
Tong, Y., Wang, T., Hong, D. W., Dai, Y. J., Han, B. F. & Liu, X. M. 2007. Ages and origin of the early Devonian granites from the north part of Chinese Altai Mountains and its tectonic implications. Acta Petrologica Sinica 23, 1933–44 (in Chinese with English abstract).Google Scholar
Valley, J. W., Kinny, P. D., Schulze, D. J. & Spicuzza, M. J. 1998. Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contributions to Mineralogy and Petrology 133, 111.CrossRefGoogle Scholar
Wang, T., Hong, D. W., Jahn, B. M., Tong, Y., Wang, Y. B., Han, B. F. & Wang, X. X. 2006. Timing, petrogenesis, and setting of Paleozoic synorogenic intrusions from the Altai Mountains, northwest China: implications for the tectonic evolution of an accretionary orogen. Journal of Geology 114, 735–51.CrossRefGoogle Scholar
Wang, T., Jahn, B. M., Kovach, V. P., Tong, Y., Hong, D. W. & Han, B. F. 2009. Nd–Sr isotopic mapping of the Chinese Altai and implications for continental growth in the Central Asian Orogenic Belt. Lithos 110, 359–72.CrossRefGoogle Scholar
Wilhem, C., Windley, B. F. & Stampfli, G. M. 2012. The Altaids of Central Asia: a tectonic and evolutionary innovative review. Earth-Science Reviews 113, 303–41.CrossRefGoogle Scholar
Winchester, J. A. & Floyd, P. A. 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology 20, 325–43.CrossRefGoogle Scholar
Windley, B. F., Kroner, A., Guo, J., Qu, G., Li, Y. & Zhang, Z. C. 2002. Neoproterozoic to Paleozoic geology of the Altai orogen, NW China: new zircon age data and tectonic evolution. Journal of Geology 110, 719–39.CrossRefGoogle Scholar
Wu, B., He, G. Q., Wu, T. R., Li, H. J. & Luo, H. L. 2006. Discovery of the Buergen ophiolitic mélange belt in Xinjiang and its tectonic significance. Geology in China 33, 476–86 (in Chinese with English abstract).Google Scholar
Xiao, W. J., Han, C. M., Liu, W., Wan, B., Zhang, J. E., Ao, S. J., Zhang, Z. Y., Song, D. F., Tian, Z. H. & Luo, J. 2014. How many sutures in the southern Central Asian Orogenic Belt: insights from East Xinjiang–West Gansu (NW China)? Geoscience Frontiers 5, 525–36.CrossRefGoogle Scholar
Xiao, W. J., Han, C. M., Sun, M., Lin, S. F., Chen, H. L., Li, Z. L., Li, J. L. & Sun, S. 2008. Middle Cambrian to Permian subduction-related accretionary orogenesis of North Xinjiang, NW China: implications for the tectonic evolution of Central Asia. Journal of Asian Earth Sciences 32, 102–17.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Allen, M. B. & Han, C. M. 2013. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Research 23, 1316–41.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Badarch, G., Sun, S., Li, J. L., Qin, K. Z. & Wang, Z. H. 2004. Palaeozoic accretionary and convergent tectonics of the southern Altaids: implications for the lateral growth of Central Asia. Journal of Geological Society, London 161, 339–42.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Huang, B. C., Han, C. M., Yuan, C., Chen, H. L., Sun, M., Sun, S. & Li, J.L. 2009 a. End-Permian to middle Triassic termination of the accretionary processes of the southern Altaids: implications for the geodynamic evolution, Phanerozoic continental growth, and metallogeny of Central Asia. International Journal of Earth Sciences 98, 1189–217.CrossRefGoogle Scholar
Xiao, W. J., Windley, B. F., Yuan, C., Sun, M., Han, C. M., Lin, S. F., Chen, H. L., Yan, Q. R., Liu, D. Y., Qin, K. Z. & Sun, S. 2009 b. Paleozoic multiple subduction-accretion processes of the southern Altaids. American Journal of Sciences 309, 221–70.CrossRefGoogle Scholar
Xinjiang, BGMR. 1993. Regional Geology of the Xinjiang Uygur Autonomous Region. Beijing: Geological Publishing House, pp. 2145 (in Chinese).Google Scholar
Ye, X. T., Zhang, C. L., Zou, H. B., Zhou, G., Yao, C. Y. & Dong, Y. G. 2015. Devonian Alaskan-type ultramafic-mafic intrusions and silicic igneous rocks along the southern Altai Orogen: implications on the Phanerozoic continental growth of the Altai Orogen of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 113, 7589.CrossRefGoogle Scholar
Yellappa, T., Santosh, M., Chetty, T. R. K., Kwon, S., Park, C., Nagesh, P., Mohanty, D. P. & Venkatasivappa, V. 2012. A Neoarchean dismembered ophiolite complex from southern India: geochemical and geochronological constraints on its suprasubduction origin. Gondwana Research 21, 246–65.CrossRefGoogle Scholar
Yuan, C., Sun, M., Xiao, W., Li, X., Chen, H., Lin, S., Xia, X. & Long, X. 2007. Accretionary orogenesis of the Chinese Altai: insights from Paleozoic granitoids. Chemical Geology 242, 2239.CrossRefGoogle Scholar
Yuan, C., Xiao, W. J., Chen, H. L., Li, J. L. & Sun, M. 2006. Zhaheba potassic basalt, eastern Junggar (NW China): geochemical characteristics and tectonic implications. Acta Geologica Sinica 80, 254–63 (in Chinese with English abstract).Google Scholar
Zhang, H. X., Niu, H. C., Terada, K., Yu, X. Y., Sato, H. & Ito, J. 2003. Zircon SHRIMP U–Pb dating on plagiogranite from Kuerti ophiolite in Altay, North Xinjiang. Chinese Science Bulletin 48, 2231–5.CrossRefGoogle Scholar
Zhang, C. L., Santosh, M., Zou, H. B., Li, H. K. & Huang, W. C. 2013. The Fuchuan ophiolite in Jiangnan Orogen: geochemistry, zircon U–Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. Lithos 179, 263–74.CrossRefGoogle Scholar
Zhang, C. L., Santosh, M., Zou, H. B., Xu, Y. G., Zhou, G., Dong, Y. G., Ding, R. F. & Wang, H.Y. 2012. Revisiting the “Irtish tectonic belt”: implications for the Paleozoic tectonic evolution of the Altai orogen. Journal of Asian Earth Sciences 52, 117–33.CrossRefGoogle Scholar
Zhang, H. X., Shen, X. M., Ma, L., Niu, H. C. & Yu, X. Y. 2008. Geochronology of Fuyun adakite, northern Xinjiang and its constraint to the initiation of the Paleo-Asian ocean subduction. Acta Petrologica Sinica 24, 1054–58 (in Chinese with English abstract).Google Scholar
Zindler, A. & Hart, S. R. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences 14, 493571.CrossRefGoogle Scholar
Supplementary material: File

Ye supplementary material S1

Supplementary Table

Download Ye supplementary material S1(File)
File 164.4 KB
Supplementary material: File

Ye supplementary material S2

Supplementary Table

Download Ye supplementary material S2(File)
File 115.2 KB
Supplementary material: File

Ye supplementary material S3

Supplementary Table

Download Ye supplementary material S3(File)
File 59.4 KB
Supplementary material: File

Ye supplementary material S4

Supplementary Table

Download Ye supplementary material S4(File)
File 125.4 KB
Supplementary material: File

Ye supplementary material S5

Supplementary Table

Download Ye supplementary material S5(File)
File 166.9 KB