Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T08:04:08.690Z Has data issue: false hasContentIssue false

The 1944 eruption of Vesuvius, Italy: combining contemporary accounts and field studies for a new volcanological reconstruction

Published online by Cambridge University Press:  11 November 2009

PAUL D. COLE*
Affiliation:
Department of Geography, Environment and Disaster Management, Coventry University, Priory Street, Coventry CV1 5FB, UK
CLAUDIO SCARPATI
Affiliation:
Dipartimento Scienze Della Terra, Università di Napoli Federico II, Largo S. Marcellino, 10, 80138 Napoli, Italy
*
*Author for correspondence: [email protected] and [email protected]

Abstract

We integrate the different contemporary sources together with new field data on the pyroclastic deposits to make a new volcanological reconstruction of the explosive phases of the 1944 Vesuvius eruption. We adopt the four successive phases of the eruption first defined by Imbò (1945), who made the most detailed contemporary description of the eruption: Phase 1 – effusive, Phase 2 – lava fountains, Phase 3 – mixed explosions and Phase 4 – seismic-explosive. Phase 1 consisted of four days of effusive activity. Phase 2 generated eight successive lava fountains which formed agglutinated spatter in a restricted area around the crater. At distances of > 1 km from the crater, reverse graded, well-sorted, scoria lapilli with up to 94 wt % juvenile material and calculations indicate a volume of 8.2 × 106 m3 DRE (Dense Rock Equivalent) for Phase 2. A short pause in scoria fallout was observed that coincides with the transition between Phases 2 and 3 of the eruption. On the crater rim there is clear evidence for the different phases, owing to the stratification of the deposits; however, away from the crater, stratigraphic breaks suggesting any discontinuity in the eruptive activity are absent. The beginning of Phase 3 is marked by the appearance of abundant dense scoria fragments, coincident with the coarsest part of the lapilli. High-density scoria forms 10 wt % of juvenile material in Phase 2, increasing to 45% in the upper part of Phase 3. Isopach maps derived from field measurements indicate a mean volume of 40.2 × 106 m3 DRE for Phase 3. Distal ash, mainly formed during Phase 3, was dispersed to the SE as far as Albania, and calculations yield a volume of 102 × 106 m3 DRE. Intermittent activity associated with Phase 4 generated ash-rich plumes dispersed towards the SW and contemporary thickness descriptions yield a bulk volume of 4.2 × 106 m3 (2.5 × 106 m3 DRE). Small pyroclastic density currents (PDCs) were observed during Phases 3 and 4. The deposits (200 m from the crater rim) of these currents have been identified on the flanks of the cone. Thin, massive and poorly sorted ash layers, that occur up to 2.5 km from the crater rim, are interpreted to represent the distal facies of these PDCs. Mass discharge rate (MDR) estimates for the paroxysmal phase (end of Phase 2 and start of Phase 3) of this event are around 3.5 × 106 kg/s, however, this increases to > 107 kg/s if the mass of distal ash is taken into account. Column height estimates from fallout isopleths associated with the eruption's paroxysmal phase are > 10 km. Based on the contemporaneous chronicles, we were able to define the type and extent of damage associated with the different styles (or temporal phases) of the eruption. Our calculations demonstrate that the present-day population at risk has doubled compared to 1944. The contemporaneous (and also subsequent) scientific literature underestimated the magnitude and intensity of this eruption and very little attention has been dedicated to the damage that occurred. We suggest that this is at least partly related to the extensive destruction of Neapolitan area and the deaths of tens of thousands of civilians related to the Second World War.

Type
Original Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

present address: Montserrat Volcano Observatory, Flemings, Montserrat, West Indies

References

Adams, N. K., De Silva, S., Self, S., Salas, G., Schubring, S., Permenter, J. L. & Arbesman, K. 2001. The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bulletin of Volcanology 62, 493518.CrossRefGoogle Scholar
Alfano, G. B. & Friedlaender, I. 1929. La storia del Vesuvio illustrata da documenti coevi. Ulm: Karl Hohn Verlag, 69 pp.Google Scholar
Arrighi, S., Principe, C. & Rosi, M. 2001. Violent strombolian eruptions at Vesuvius during post-1631 activity. Bulletin of Volcanology 63, 126–50.CrossRefGoogle Scholar
Bentley, H. & Gregory, J. R. 1944. Final Report on the Vesuvius Emergency Operation, Headquarters Naples Province (Allied Control Commission).Google Scholar
Bertagnini, A., Landi, P., Rosi, M. & Vigliargio, A. 1998. The Pomici di Base plinian eruption of Somma-Vesuvius. Journal of Volcanology and Geothermal Research 83, 219–39.CrossRefGoogle Scholar
Blong, R. J. 1984. Volcanic hazards: A sourcebook on the effects of eruptions. Sydney: Academic Press, pp. 1424.Google Scholar
Branney, M. J. & Kokelaar, P. 1992. A reappraisal of ignimbrite emplacement: progressive aggradation and particulate to non-particulate flow transitions during emplacement of high-grade ignimbrite. Bulletin of Volcanology 54, 504–20.CrossRefGoogle Scholar
Carey, S. & Sparks, R. S. J. 1986. Quantitative Models of the fallout and dispersal of tephra from volcanic eruption columns. Bulletin of Volcanology 48, 109–25.CrossRefGoogle Scholar
Casertano, L. 1949. L'azione del vento su proietti vesuviani durante il parossismo del marzo 1944. Annali Osservatorio Vesuviano, V serie, volume unico, 381–95.Google Scholar
Chester, D. K., Duncan, A. M., Wetton, P. & Wetton, R. 2007. Responses of the Anglo-American military authorities to the eruption of Vesuvius, March 1944. Journal of Historical Geography 33, 168–96.CrossRefGoogle Scholar
Cioni, R., Bertagnini, A., Santacroce, R. & Andronico, D. 2008. Explosive activity scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. Journal of Volcanology and Geothermal Research 178, 331–46.CrossRefGoogle Scholar
Cioni, R., Sulpizio, R. & Garruccio, N. 2003. Variabilità of the eruption dynamics during a Subplinian event: the Greenish Pomice eruption of Somma-Vesuvius (Italy). Journal of Volcanology and Geothermal Research 124, 89114.CrossRefGoogle Scholar
Cole, P. D. & Scarpati, C. 1993. A facies interpretation of the eruption and emplacement mechanisms of the upper part of the Neapolitan Yellow Tuff, Campi Flegrei, southern Italy. Bulletin of Volcanology 55, 311–26.CrossRefGoogle Scholar
Cubellis, E. & Luongo, G. 1997. L'eruzione del marzo 1944. In Mons Vesuvius, pp. 273–94. Napoli: Casa Editrice Fausto Fiorentino.Google Scholar
Fierstein, J. & Nathenson, M. 1992. Another look at the calculation of fallout Tephra volumes. Bulletin of Volcanology 54, 156–67.CrossRefGoogle Scholar
Fink, J. H. & Anderson, S. W. 2000. Lava domes and coulees. In Encyclopedia of volcanoes (ed. Sigurdsson, H.), pp. 307–20. London: Academic Press.Google Scholar
Fournier d'Albe, E. M. 1979. Objectives of volcanic monitoring and prediction. Journal of the Geological Society, London 136, 321–6.CrossRefGoogle Scholar
Fulignati, P., Marianelli, P., Métrich, N., Santacroce, R. & Sbrana, A. 2004. Towards a reconstruction of the magmatic feeding system of the 1944 eruption of Mt Vesuvius. Journal of Volcanology and Geothermal Research 133, 1322.CrossRefGoogle Scholar
Fulignati, P., Marianelli, P., Sbrana, A. & Guido, L. 1996. The 1944 eruption: overall description. IAVCEI/CEV Vesuvius decade, 1996 Workshop handbook.Google Scholar
Fulignati, P., Marianelli, P., Sbrana, A. & Guido, L. 1998. New insights on the thermometamorphic–metasomatic magma chamber shell of the 1944 eruption of Vesuvius. Acta Vulcanologica 10, 4757.Google Scholar
Hazlett, R. W., Buesch, D., Anderson, J. L., Elan, R. & Scandone, R. 1991. Geology, failure conditions, and implications of seismogenic avalanches of the 1944 eruption at Vesuvius, Italy. Journal of Volcanology and Geothermal Research 47, 249–64.CrossRefGoogle Scholar
Holland, J. 2008. Italy's Sorrow: A Year of War 1944–45. HarperPress, 320 pp.Google Scholar
Houghton, B. F., Bonadonna, C., Gregg, C. E., Johnston, D. M., Cousins, W. J., Cole, J. W. & Del Carl, P. 2006. Proximal tephra hazards: Recent eruption studies applied to volcanic risk in the Auckland volcanic field, New Zealand. Journal of Volcanology and Geothermal Research 155, 138–49.CrossRefGoogle Scholar
Houghton, B. F. & Wilson, C. J. N. 1989. A vesicularity index for pyroclastics deposits. Bulletin of Volcanology 51, 451–62.CrossRefGoogle Scholar
Houghton, B. F., Wilson, C. J. N. & Pyle, D. M. 2000. Pyroclastic fall deposits. In Encyclopedia of volcanoes (ed. Sigurdsson, H.), pp. 555–70. London: Academic Press.Google Scholar
ICSRI. 1937 a. VIII censimento generale della popolazione. Provincia di Avellino. Ippolito Failli, Roma 69, 1214.Google Scholar
ICSRI. 1937 b. VIII censimento generale della popolazione. Provincia di Benevento. Ippolito Failli, Roma 70, 12.Google Scholar
ICSRI. 1937 c. VIII censimento generale della popolazione. Provincia di Napoli. Ippolito Failli, Roma 71, 1214.Google Scholar
ICSRI. 1937 d. VIII censimento generale della popolazione. Provincia di Salerno. Ippolito Failli, Roma 72, 1214.Google Scholar
Il Risorgimento. 1944 a. Tuesday 21 March. L'eruzione del Vesuvio. L'evacuazione dei centri maggiormente minacciati. Le autorità alleate sul luogo. Napoli.Google Scholar
Il Risorgimento. 1944 b. Thursday 23 March. Il Vesuvio in eruzione. La corrente di lava muta direzione. Le provvidenze degli alleati. La pioggia di cenere e lapilli. Il Principe ereditario sul posto, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 c. Friday 24 March. L'eruzione del Vesuvio. I paesi vesuviani sotto la pioggia di cenere. Il re e il Cardinale nei luoghi colpiti. Continua l'opera di soccorso alle popolazioni, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 d. Sunday 25 March. Fumo, esalazioni e cenere nella nuova fase eruttiva. Il numero delle vittime, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 e. Tuesday 28 March. L'eruzione del Vesuvio nella sua fase finale. L'attività effusiva completamente finita. Nubi ardenti e scariche elettriche nelle ultime manifestazioni, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 f. Wednesday 29 March. Dopo la fase effusive. Continua la pioggia di cenere, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 g. Thursday 30 March. L'eruzione del Vesuvio volge al suo termine, p. 4. Napoli.Google Scholar
Il Risorgimento. 1944 h. Friday 31 March. L'eruzione è finita. Un comunicato del prof. Imbò, p. 4. Napoli.Google Scholar
Iovene, F. 1946. Osservazioni sulle mofete vesuviane apparse in occasione dell'ultimo parossismo vulcanico. Bollettino Società dei Nataturalisti di Napoli 55, 108–16.Google Scholar
Imbò, G. 1945. Il parossismo vesuviano del Marzo 1944. Rendiconti Accademia Scienze Fisiche Matematiche di Napoli, Serie IV 13, 309–25.Google Scholar
Imbò, G. 1946. Azione dell'attività eruttiva ed in particolare del parossismo del marzo 1944 sulle variazioni di forma del cono vesuviano. Bollettino Società dei Nataturalisti di Napoli 55, 1523.Google Scholar
Imbò, G. 1947. Considerazioni ed osservazioni comprovanti che l'eruzione del 1944 fu terminale. Bollettino Società dei Nataturalisti di Napoli 56, 116–26.Google Scholar
Imbò, G. 1949 a. L'attività eruttiva e relative osservazioni nel corso dell'intervallo intereruttivo 1906–1944 ed in particolare del parossismo del Marzo 1944. Annali Osservatorio Vesuviano, V serie, volume unico, 185–380.Google Scholar
Imbò, G. 1949 b. Le recenti manifestazioni eruttive vesuviane. Bulletin of Volcanology 8, 119–22.CrossRefGoogle Scholar
Imbò, G. 1949 c. Considerazioni sulla presente attività del Vesuvio. Bulletin of Volcanology 8, 123–32.CrossRefGoogle Scholar
ISTAT (Istituto Nazionale di Statistica). 2007. Demografia in cifre. Popolazione residente. http://demo.istat.it/pop2007/index.html.Google Scholar
Italian Dipartimento della Protezione Civile. 1995. Pianificazione nazionale di emergenza dell'area vesuviana. Presidenza del Consiglio dei Ministri.Google Scholar
Johnston-Lavis, H. J. 1909. The eruption of Vesuvius in April 1906. Scientific Transactions of the Royal Dublin Society, 139–208.Google Scholar
Joron, J. L., Métrich, N., Rosi, M., Santacroce, R. & Sbrana, A. 1987. Chemistry and petrography. CNR Quaderni Ricerca Scientifica 114, 105–74.Google Scholar
Lacroix, A. 1906. The eruption of Vesuvius in April, 1906. Annual Report, Smithsonian Institution, 223–49.Google Scholar
Lazzari, A. 1948. Segnalazione della caduta in Albania delle ceneri del Vesuvio dell'eruzione del Marzo 1944. Bollettino Società dei Nataturalisti di Napoli 57, 36.Google Scholar
Lewis, N. 1978. Naples ‘44. London: Pantheon Books.Google Scholar
Lowe, D. R. 1982. Sediment gravity flow: II, depositional models with special reference to the deposits of high density turbidity currents. Journal of Sedimentary Petrology 52, 279–97.Google Scholar
Luongo, G., Perrotta, A. & Scarpati, C. 2003. Impact of 79 AD explosive eruption on Pompeii I: relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events. Journal of Volcanology and Geothermal Research 126, 201–23.CrossRefGoogle Scholar
Luongo, G., Perrotta, A., Scarpati, C., De Carolis, E., Patricelli, G. & Ciarallo, A. 2003. Impact of 79 AD explosive eruption on Pompeii II: causes of death of the inhabitants inferred by stratigraphical and areal distribution of the human corpses. Journal of Volcanology and Geothermal Research 126, 169200.CrossRefGoogle Scholar
Malladra, A. 1912. Il fondo del cratere vesuviano. Rendiconti Accademia Scienze Fisiche Matematiche Napoli.Google Scholar
Malladra, A. 1914. Sulle modificazioni del Vesuvio dopo il 1906 e la livellazione geometrica del vulcano. Bollettino della Reale Società di Geografia.Google Scholar
Malladra, A. 1922. Sul graduale riempimento del cratere del Vesuvio. Atti VII Congresso Geografia Italiana.Google Scholar
Marianelli, P., Métrich, N. & Sbrana, A. 1999. Shallow and deep reservoirs involved in magma supply of the 1944 eruption of Vesuvius. Bulletin of Volcanology 61, 4863.CrossRefGoogle Scholar
Mastrolorenzo, G., Munno, R. & Rolandi, G. 1993. Vesuvius 1906: a case study of a paroxysmal eruption and its relation to eruptive cycles. Journal of Volcanology and Geothermal Research 58, 217–37.CrossRefGoogle Scholar
Mercalli, G. 1883. Vulcani e fenomeni vulcanici in Italia. Reprinted Arnaldo Forni Editore, 1981.Google Scholar
Mercalli, G. 1906. La grande eruzione vesuviana cominciata il 4 aprile 1906. Memorie Pontificia Accademia Romana Nazionale Lincei 24, 307–38.Google Scholar
Neri, A., Aspinall, W. P., Cioni, R., Bertagnini, A., Baxter, P. J., Zuccaro, G., Andronico, D., Barsotti, S., Cole, P. D., Esposti Ongaro, T., Hincks, T. K., Macedonio, G., Papale, P., Rosi, M., Santacroce, R. & Woo, G. 2008. Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. Journal of Volcanology and Geothermal Research 178, 397415.CrossRefGoogle Scholar
Nunziante, L. 1997. Sul carico di cenere vulcanica necessario per il crollo di coperture nel napoletano. Dipartimento di Scienza delle Costruzioni Università di Napoli Federico II Scientific Commitee, Napoli, 26 gennaio 1997.Google Scholar
Parascandola, A. 1945. L'eruzione vesuviana del marzo 1944, i prodotti piroclastici. Rendiconti Accademia Scienze Fisiche Matematiche di Napoli, Serie IV, 13, 285305.Google Scholar
Parascandola, A. 1948. Se sia stato esclusivamente terminale l'afflusso lavico nella eruzione vesuviana del marzo 1944. Bollettino Società dei Nataturalisti di Napoli 56, 141–64.Google Scholar
Parfitt, E. & Wilson, L. 2008. Fundamentals of Physical Volcanology. Blackwell Publishing, 256 pp.Google Scholar
Perret, F. A. 1924. The Vesuvius eruption of 1906. Study of a volcanic cycle. Washington: Carnegie Institution.Google Scholar
Perrotta, A. & Scarpati, C. 2003. Volume partition between the plinian and co-ignimbrite air-fall deposits of the CI eruption. Mineralogy and Petrology 79, 6778.CrossRefGoogle Scholar
Pesce, A. & Rolandi, G. 1994. Vesuvio 1944. L'ultima eruzione. Scafati, 213 pp.Google Scholar
Pyle, D. M. 1989. The Thickness, volume and grainsize of tephra fall deposits. Bulletin of Volcanology 51, 115.CrossRefGoogle Scholar
Rolandi, G., Maraffi, S., Petrosino, P. & Lirer, L. 1993 a. The Ottaviano eruption of Somma-Vesuvio (8000 y b.p.): a magmatic alternating fall and flow forming eruption. Journal of Volcanology and Geothermal Research 58, 4365.CrossRefGoogle Scholar
Rolandi, G., Mastrolorenzo, G., Barrella, A. M. & Borrelli, A. 1993 b. The Avellino plinian eruption of Somma-Vesuvius (3760 y. B.P.): the progressive evolution from magmatic to hydromagmatic style. Journal of Volcanology and Geothermal Research 58, 6788.CrossRefGoogle Scholar
Rose, W. I., Self, S., Murrow, P. J., Bonadonna, C., Durant, A. J. & Ernst, G. G. J. 2008. Nature and significance of small volume fall deposits at composite volcanoes: Insights from the October 14, 1974 Fuego eruption, Guatemala. Bulletin of Volcanology 70, 1043–68.CrossRefGoogle Scholar
Rosi, M., Principe, C. & Vecci, R. 1993. The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. Journal of Volcanology and Geothermal Research 58, 151–82.CrossRefGoogle Scholar
Santacroce, R. 1987. Somma Vesuvius. CNR Quaderni de la Ricerca Scientifica vol. 114, 251 pp.Google Scholar
Scandone, R., Arganesi, G. & Galdi, F. 1993. The evaluation of risk in the Vesuvian area. Journal of Volcanology and Geothermal Research 58, 263–71.CrossRefGoogle Scholar
Scandone, R., Giacomelli, L. & Speranza, F. F. 2008. Persistent activity and violent strombolian eruptions at Vesuvius between 1631 and 1944 Journal of Volcanology and Geothermal Research 170, 167–80.CrossRefGoogle Scholar
Scandone, R., Iannone, F. & Mastrolorenzo, G. 1986. Stima dei Parametri Dinamici dell'eruzione del 1944 del Vesuvio. Bollettino Gruppo Nazionale di vulcanologia 2.Google Scholar
Scherillo, A. 1949. Le lave e le scorie dell'eruzione vesuviana del 1944. Annali Osservatorio Vesuviano 5, 169–84.Google Scholar
Scherillo, A. 1953. Nuovo contributo allo studio dei prodotti dell'eruzione vesuviana del 1944. Bulletin of Volcanology 13, 129–44.CrossRefGoogle Scholar
Sigurdsson, H., Carey, S., Cornell, W. & Pescatore, T. 1985. The eruption of Vesuvius in A.D. 79. National Geographic Research 1 (3), 332–87.Google Scholar
Sohn, Y. K. & Chough, S. K. 1989. Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology 37, 1115–35.Google Scholar
Stefanile, A. 1968. I cento bombardamenti di Napoli. Napoli: Marotta Ed, 300 pp.Google Scholar
Sulpizio, R., Mele, D., Dellino, P. & La Volpe, L. 2004. A complex, subplinian-type eruption from low-viscosity, phonolitic to tepori-phonolitic magma: the AD 472 (Pollena) eruption of Somma Vesuvius, Italy. Bulletin of Volcanology 67, 743–67.CrossRefGoogle Scholar
Vilardo, G., Terranova, C., Bronzino, G., Giordano, S., Ventura, G., Alessio, G., Gabriele, M., Mainolfi, R., Pagliuca, E. & Veneruso, M. 2001. SISCam: Sistema Informativo Sismotettonico della Regione Campania. Laboratorio di Geomatica e Cartografia INGV-OV.Google Scholar
Walker, G. P. L. 1981. Plinian eruptions and their products. Bulletin of Volcanology 44, 223–40.CrossRefGoogle Scholar
Wilson, C. J. N. & Hildreth, W. 1997. The Bishop Tuff: new insights from eruptive stratigraphy. Journal of Geology 105, 407–39.CrossRefGoogle Scholar
Zimanowski, B., Wohletz, K., Dellino, P. F. & Buttner, R. 2003. The volcanic ash problem. Journal of Volcanology and Geothermal Research 122, 15.CrossRefGoogle Scholar
Supplementary material: Image

Cole supplementary material

Figures.jpg

Download Cole supplementary material(Image)
Image 637.9 KB