(C57BL × CBA)F1 hybrid female mice were mated with hemizygous Rb(X.2)2Ad males to distinguish the paternal X chromosome. Homozygous tetraploids were produced by blastomere fusion at the 2-cell stage, and 161 of these were transferred to recipients and analysed on the 10th day of gestation. 59 implants contained resorptions and 76 contained either an embryo and/or extraembryonic membranes. 38 (20, XXXX and 18, XXYY) were analysed to investigate their X-inactivation pattern. Embryonic and yolk sac endodermally- and mesodermally-derived samples were analysed by G-banding and by Kanda analysis. In the XX and XY controls, the predicted pattern of X-inactivation was observed, though 12·2% of metaphases in the XX series displayed no X-inactivation. In the XY series the Y chromosome was seen in a high proportion of metaphases.
In the XXXX tetraploids, 8 cell lineages were recognized with regard to their X-inactivation pattern, though most belonged to the following 3 categories: (XmXm)XpXp, Xm(XmXp)Xp and XmXm(XpXp). The other categories were only rarely encountered. In the embryonic and mesodermally-derived tissue the ratio of these groups was close to 1:2:1, whereas in the endodermally-derived tissue it was 1:4·11:4·88, due to preferential paternal X-inactivation. A significant but small proportion of all 3 tissues analysed displayed no evidence of X-inactivation. Indirect evidence suggests that this represents a genuine group because of the high efficiency of the Kanda staining. The presence of the Xm(XmXp)Xp category is consistent with the expectation that X-inactivation occurs randomly in 2 of the 4 X chromosomes present. The presence of small numbers of preparations with no evidence of X-inactivation and other unexpected categories suggests that these are probably selected against during development.