Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T16:48:07.833Z Has data issue: false hasContentIssue false

Yeast artificial chromosomes: an alternative approach to the molecular analysis of mouse developmental mutations

Published online by Cambridge University Press:  14 April 2009

Zoia Larin
Affiliation:
Imperial Cancer Research Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX
Hans Lehrach*
Affiliation:
Imperial Cancer Research Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX
*
* Corresponding author.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Mammalian genetics now allows a molecular study of genomic regions previously analysed by genetic and embryological techniques. To simplify such an analysis, we have established a number of libraries of mouse DNA in Yeast Artificial Chromosome (YAC) vectors, constructed either by partial digestion with EcoRI, or by complete digestion with enzymes which cut rarely in the mammalian genome. In this paper we report the construction of complete digest libraries prepared from mouse genomic DNA using the rare cutter enzymes NoiI and BssHII, and the detection of gene loci from the H-2 complex, the t–complex, and other loci from the mouse genome. Due to their large insert size, YAC clones simplify the cloning of extended regions of the mouse genome surrounding known developmental mutations and should, after introduction into the germ line, offer a high probability of correct expression of the genes contained within the cloned region. We hope that this will allow the use of YAC clones to scan regions of interest such as the t–complex for specific genes by testing DNA introduced into transgenic mice for the ability to complement mutations localised to this region.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

References

Abe, K., Wei, J. F., Wei, F. S., Hsu, Y. C., Uehara, H., Artzt, K. & Bennett, D. (1988). Searching for coding sequences in the mammalian genome: the H-2K region of the mouse is replete with genes expressed in embryos. EMBO Journal 7, 34413449.CrossRefGoogle ScholarPubMed
Barlow, D. P. & Lehrach, H. (1987). Genetics by gel electrophoresis: the impact of pulsed field gel electrophoresis on mammalian genetics. Trends in Genetics 3, 167171.CrossRefGoogle Scholar
Bender, W., Akam, M., Karch, F., Beachy, P. A., Piefer, M., Speirer, P., Lewis, E. B. & Hogness, D. S. (1983). Molecular genetics of the bithorax complex in Drosophila melanogaster. Science 221, 2329.CrossRefGoogle ScholarPubMed
Brown, W. R. A. & Bird, A. P. (1986). Long-range restriction site mapping of mammalian genomic DNA. Nature 322, 477481.CrossRefGoogle ScholarPubMed
Burgers, P. M. J. & Percival, K. J. (1987). Transformation of yeast spheroplasts without cell fusion. Analytical Biochemistry 163, 391397.CrossRefGoogle ScholarPubMed
Burke, D. T., Carle, G. F. & Olson, M. V. (1987). Cloning of large segments of exogenous DNA into yeast by means of artificial chromosome vectors. Science 236, 806812.CrossRefGoogle ScholarPubMed
Collins, F. S. & Weissman, S. M. (1984). Directional cloning of DNA fragments at a large distance from an initial probe: A circularization method. Proceedings of the National Academy of Sciences USA 81, 6812.CrossRefGoogle Scholar
Coulson, A., Waterston, R., Kiff, J., Sulston, J. & Kohara, Y. (1988). Genome linking with yeast artificial chromosomes. Nature 335, 184186.CrossRefGoogle ScholarPubMed
Feinberg, A. P. & Vogelstein, B. (1984). A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 132, 613.CrossRefGoogle Scholar
Garza, D., Ajioka, J. W., Burke, D. T. & Hartl, D. L. (1989). Mapping the Drosophila genome with yeast artificial chromosomes. Science 246, 641646.CrossRefGoogle ScholarPubMed
Grosveld, F., Assendelft, G. B., Greaves, D. R. & Kollias, G. (1987). Position-independent, high level expression of the human β-globin gene in transgenic mice. Cell 51, 975985.CrossRefGoogle ScholarPubMed
Herrmann, B. G., Barlow, D. P. & Lehrach, H. (1987). An inverted duplication of more than 650 Kbp in mouse chromosome 17 mediates unequal but homologous recombination between chromosomes heterozygous for a large inversion. Cell 48, 813825.CrossRefGoogle Scholar
Herrmann, B. G., Labeit, S., Poustka, A., King, T. R. & Lehrach, H. (1990). Cloning of the T gene required in mesoderm formation in the mouse. Nature 343, 617622.CrossRefGoogle Scholar
Lyon, M. F., Zenthon, J., Evans, E. P., Burtenshaw, M. D. & Willison, K. R. (1988). Extent of the mouse t–complex and its inversions shown by in situ hybridization. Immunogenetics 27, 375382.CrossRefGoogle ScholarPubMed
Marchuk, D. & Collins, F. S. (1988). pYAC RC, a yeast artificial chromosome vector for cloning DNA cut with infrequently cutting enzymes. Nucleic Acids Research 16, 7743.CrossRefGoogle Scholar
Monaco, A. P. & Kunkel, L. M. (1987). A giant locus for the Duchenne and Becker muscular dystrophy gene. Trends in Genetics 3, 3337.CrossRefGoogle Scholar
Poustka, A. & Lehrach, H. (1986). Jumping libraries and linking libraries: the next generation of molecular tools in mammalian genetics. Trends in Genetics 2, 174179.CrossRefGoogle Scholar
Rappold, G. A., Stubbs, L., Labeit, S., Crkvenjakov, R. B. & Lehrach, H. (1987). Identification of a testis-specific gene from the mouse t–complex next to a CpG-rich island. EMBO Journal 6, 19751980.CrossRefGoogle ScholarPubMed
Rothstein, R. (1985). Cloning in Yeast. In DNA Cloning Volume II, (Glover, D. M. ed), IRL Press, Oxford, p. 45.Google Scholar
Rubock, M. J., Larin, Z., Cook, M., Papalopulu, N., Krumlauf, R. & Lehrach, H. (1990). A yeast artificial chromosome containing the mouse homeobox cluster Hox-2. Proceedings of the National Academy of Science USA 87, 47514755.CrossRefGoogle ScholarPubMed
Schwartz, D. & Cantor, C. R. (1984). Separation of chromosome-sized DNAs by pulsed field gel electro-phoresis. Cell 37, 6775.CrossRefGoogle Scholar
Silverman, G. A., Ye, R. D., Pollock, K. M., Sadler, J. E. & Korsmeyer, S. J. (1989). Use of yeast artificial chromosome clones for mapping and walking within human chromosome segment 18q21·3. Proceedings of the National Academy of Science USA 86, 74857489.CrossRefGoogle ScholarPubMed