Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T00:14:19.720Z Has data issue: false hasContentIssue false

Variable evolutionary stability of Y chromosomal repeated sequences in the genus Mus

Published online by Cambridge University Press:  14 April 2009

Timothy H. K. Platt
Affiliation:
Department of Biology, University of South Carolina, Columbia, South Carolina 29208, U.S.A.
Michael J. Dewey
Affiliation:
Department of Biology, University of South Carolina, Columbia, South Carolina 29208, U.S.A.

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The study reported here is an examination of the organization and evolution of three Y chromosomal repeated sequences, designated pBC10–0.6, pBC15–1.1, and pBA33–1.8, in five closely related species of the genus Mus. The species distributions of major restriction fragment length polymorphisms produced with a panel of restriction enzymes is used to develop the phylogenetic relationships between the five species studied. However, the apparent degree of relatedness among these species varied a great deal with each of the three probes and was also highly dependent on the particular restriction enzyme used. The usefulness for phylogenetic studies of closely associated sequences varying in evolutionary stability is discussed.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

References

Baron, B., Metezeau, P., Hatat, D., Roberts, C., Goldberg, M. E. & Bishop, C. (1986). Cloning of DNA libraries from mouse Y chromosomes purified by flow cytometry. Somatic Cell and Molecular Genetics 12, 289295.CrossRefGoogle ScholarPubMed
Bishop, C. E., Bousot, P., Baron, B., Bonhomme, F. & Hatat, D. (1985). Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature (Lond.) 315, 7072.CrossRefGoogle ScholarPubMed
Blin, N. & Stafford, P. W. (1976). A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Research 3, 23022308.CrossRefGoogle ScholarPubMed
Bonhomme, F., Catalan, J., Britton-Davidson, J., Chapman, V. M., Moriwaki, K., Nevo, E. & Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochemical Genetics 22, 275303.CrossRefGoogle ScholarPubMed
Brownell, E. (1983). DNA / DNA hybridization studies of muroid rodents. Evolution 37, 10341051.CrossRefGoogle ScholarPubMed
Callahan, R. & Todaro, G. J. (1978). Four major endogenous retrovirus classes each genetically transmitted in various species of Mus. In: Origins of Inbred Mice. (ed. Morse, H. C.), pp. 689713. New York: Academic Press.CrossRefGoogle Scholar
Eicher, E. M., Phillips, S. J. & Washburn, L. L. (1983). The use of molecular probes and chromosomal rearrangements to partition the mouse Y chromosome into functional regions. In: Recombinant DNA and Medical Genetics (eds. Messer, A. and Porter, I. H.), pp. 5771. New York: Academic Press.Google Scholar
Ferris, S. D., Sage, D. R., Prager, E. M., Ritte, U. & Wilson, A. C. (1983). Mitochondrial DNA evolution in mice. Genetics 105, 681721.CrossRefGoogle ScholarPubMed
Godson, G. N. & Vapnek, D. (1973). A simple method of preparing large amounts of φχ174 RFI supercoiled DNA. Biochemical Biophysica Acta 299, 516.CrossRefGoogle Scholar
Lamar, E. E. & Palmer, E. (1984). Y-encoded, species-specific DNA in mice: evidence that the Y chromosome exists in two polymorphic forms in inbred strains. Cell 37, 171177.CrossRefGoogle Scholar
Maniatis, T., Fritsch, E. F. & Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory.Google Scholar
Maniatis, T., Jeffrey, A. & Kleid, D. G. (1975). Nucleotide sequence of the rightward operator of phage λ. Proceedings of the National Academy of Sciences (USA) 72, 11841192.CrossRefGoogle ScholarPubMed
Marshall, T. (1986). Systematics of the genus Mus. Current Topics in Microbiology and Immunology 127, 1218.Google ScholarPubMed
Martin, S. L., Voliva, C. F., Hardies, S. C., Edgell, M. H. & Hutchinson, C. A. III (1985). Tempo and mode of concerted evolution in the L1 repeat family of mice. Molecular Biology and Evolution 2, 127140.Google ScholarPubMed
Nallaseth, F. S. & Dewey, M. J. (1986). Moderately repeated mouse Y chromosomal sequence families present distinct types of organization and evolutionary change. Nucleic Acids Research 14, 52955307.CrossRefGoogle ScholarPubMed
Nallaseth, F. S., Lawther, R. P., Stallcup, M. R. & Dewey, M. J. (1983). Isolation of recombinant bacteriophage containing male specific mouse DNA. Molecular and General Genetics 190, 8084.CrossRefGoogle ScholarPubMed
Nishioka, Y. & Lamothe, E. (1986). Isolation and characterization of a mouse Y chromosomal repetitive sequence. Genetics 133, 417432.CrossRefGoogle Scholar
Nishioka, Y. & Lamothe, E. (1987). Evolution of a mouse Y chromosome sequence flanked by highly repetitive elements. Genome 29, 380383.CrossRefGoogle ScholarPubMed
Phillips, S. J., Birkenmeier, E. H., Callahan, R. & Eicher, E. M. (1982). Male and female DNAs can be discriminated using retroviral probes. Nature 297, 241243.CrossRefGoogle ScholarPubMed
Platt, T. H. K. & Dewey, M. J. (1987). Multiple forms of male-specific simple repetitive sequences in the genus Mus. Journal of Molecular Evolution 25, 201206.CrossRefGoogle ScholarPubMed
Selander, R. K., Hunt, W. G. & Yang, S. Y. (1969). Protein polymorphism and genetic heterozygosity in two European subspecies of the house mouse. Evolution 23, 379390.CrossRefGoogle Scholar
Singh, L., Purdom, I. F. & Jones, K. W. (1980). Sex chromosome-associated satellite DNA: evolution and conservation. Chromosoma 79, 137157.CrossRefGoogle ScholarPubMed
Wensink, P. C., Tabata, S. & Puchl, C. (1979). The clustered and scrambled arrangement of moderately repetitive elements in Drosophila DNA. Cell 18, 12311246.CrossRefGoogle ScholarPubMed
Yonekawa, H., Moriwaki, K., Gotsh, O., Watanabe, J., Hayashi, J.-C., Miyashita, N., Petras, M. L. & Tagashira, Y. (1980). Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNA. Japan Journal of Genetics 55, 289296.Google Scholar