Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:45:17.876Z Has data issue: false hasContentIssue false

Use of isozymes as chromosome markers in the isolation and characterization of wheat-barley chromosome addition lines

Published online by Cambridge University Press:  14 April 2009

Gary E. Hart
Affiliation:
Agronomy Department, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia
A. K. M. R. Islam
Affiliation:
Agronomy Department, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia
K. W. Shepherd
Affiliation:
Agronomy Department, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond, South Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The alcohol dehydrogenase (ADH), glutamic oxaloacetic transaminase (GOT), aminopeptidase (AMP), endopeptidase (EP), and esterase (EST) zymogram phenotypes of Chinese Spring wheat, Betzes barley, Chinese Spring-Betzes heptaploids, and a number of presumptive Betzes chromosome additions to Chinese Spring were determined. It was found that four disomic chromosome addition lines could be distinguished from one another and from the other three possible lines on the basis of the zymogram phenotypes of these isozymes.

The structural gene Adh-H1 was located in Betzes chromosome 4, the genes Got-H2 and Amp-H1 in chromosome 6, and the gene Ep-H1 in chromosome 1. These gene locations provide evidence of homoeology between Betzes chromosomes 4, 6, and 1 and the Chinese Spring chromosomes of homoeologous groups 4, 6, and 7, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1980

References

REFERENCES

Barber, H. N., Driscoll, C. J., Long, P. M. & Vickery, R. S. (1968). Protein genetics of wheat and homoeologous relationships of chromosomes. Nature 218, 450452.CrossRefGoogle Scholar
Barber, H. N., Driscoll, C. J., Long, P. M. & Vickery, R. S. (1969). Gene similarity of the Triticinae and the study of segmental interchanges. Nature 222, 897898.CrossRefGoogle Scholar
Bergman, J. W. (1972). Chromosome locations of genes controlling esterase and malate dehydrogenase isozymes in Triticum. Ph.D. dissertation, North Dakota State University, U.S.A.Google Scholar
Bergman, J. W. & Maan, S. S. (1973). Genetic control of isozymes in wheat-rye addition lines with rye or wheat cytoplasm. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 329335.Google Scholar
Brown, A. H. D., Nevo, E., Zohary, D. & Dagan, O. (1978). Genetic variation in natural populations of wild barley (Hordeum spontaneum). Genetica 49, 97108.CrossRefGoogle Scholar
Cauderon, Y., Autran, J. C., Joudrier, Ph. & Kobrehel, K. (1978). Identification de chromosomes d'Agropyron intermedium impliqués dans la synthèse des gliadiness, des ßamylases et des peroxydases agrave l'aide de lignees d'addition Blé × Agropyron. Annales Amélioration Plantes 28, 257267.Google Scholar
Driscoll, C. J. (1975). First compendium of wheat-alien chromosome lines. Annual Wheat Newsletter 21, 1632.Google Scholar
Driscoll, C. J. & Sears, E. R. (1971). Individual addition of the chromosomes of ‘Imperial’ rye to wheat. Agronomy Abstracts, p. 6.Google Scholar
Hart, G. E. (1970). Evidence for triplicate genes for alcohol dehydrogenase in hexaploid wheat. Proceedings of the National Academy of Sciences, U.S.A. 66, 11361141.CrossRefGoogle ScholarPubMed
Hart, G. E. (1973). Homoeologous gene evolution in hexaploid wheat. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 805810.Google Scholar
Hart, G. E. (1975). Glutamate oxaloacetate transaminase isozymes of Triticum: Evidence for multiple systems of triplicate structural genes. In Isozymes, vol.III (ed. Markert, C. L.), pp. 637657. Academic Press.CrossRefGoogle Scholar
Hart, G. E. (1978). Chromosomal arm locations of Adh-R1 and an acid phosphatase structural gene in Imperial rye. Cereal Research Communications 6, 123133.Google Scholar
Hart, G. E. (1979). Genetical and chromosomal relationships among the wheats and their relatives. Stadler Genetics Symposium 11, 929.Google Scholar
Hart, G. E., Islam, A. K. M. R. & Shepherd, K. W. (1977). Isozyme expression in wheat-barley addition lines. Proceedings of the 24th Annual Meeting of the Genetics Society of Australia 263 (Abstract).Google Scholar
Hart, G. E. & Langston, P. J. (1977). Chromosomal location and evolution of isozyme structural genes in hexaploid wheat. Heredity 39, 263277.CrossRefGoogle Scholar
Hart, G. E., McMillin, D. E. & Sears, E. R. (1976). Determination of the chromosomal location of a glutamate oxaloacetate transaminase structural gene using Triticum-Agropyron translocations. Genetics 83, 4961.CrossRefGoogle ScholarPubMed
Hvid, S. & Nielsen, G. (1977). Esterase isoenzyme variants in barley. Hereditas 87, 155162.CrossRefGoogle Scholar
Irani, B. N. & Bhatia, C. R. (1972). Chromosomal location of alcohol dehydrogenase gene(s) in rye, using wheat-rye addition lines. Genetica 43, 195200.CrossRefGoogle Scholar
Islam, A. K. M. R. (1980). Identification of wheat-barley addition lines with N-banding of chromosomes. Chromosoma 76, 365373.CrossRefGoogle Scholar
Islam, A. K. M. R. & Shepherd, K. W. (1980). Cytological abnormalities in wheat:barley hybrids and their derivatives. (Submitted for publication.)Google Scholar
Islam, A. K. M. R., Shepherd, K. W. & Sparrow, D. H. B. (1978). Production and characterization of wheat-barley addition lines. Proceedings of the Fifth International Wheat Genetics Symposium, pp. 365371.Google Scholar
Kahler, A. L. & Allard, R. W. (1970). Genetics of isozyme variants in barley. I. Esterases. Crop Science 10, 444448.CrossRefGoogle Scholar
Kobrehel, K. (1978). Identification of chromosome segments controlling the synthesis of peroxidases in wheat seeds and in transfer lines with Agropyron elongatum. Canadian Journal of Botany 56, 10911094.CrossRefGoogle Scholar
MacDonald, T. & Smith, H. H. (1972). Variation associated with an Aegilops umbellulata chromosome segment incorporated in wheat. II. Peroxidase and leucine aminopeptidase isozymes. Genetics 72, 7786.CrossRefGoogle ScholarPubMed
May, C. E., Vickery, R. S. & Driscoll, C. J. (1973). Gene control in hexaploid wheat. Proceedings of the Fourth International Wheat Genetics Symposium, pp. 843849.Google Scholar
Nakai, Y. (1976). Isozyme variations in Aegilops and Triticum. III. Chromosomal basis of the esterase isozyme production in different organs of Chinese Spring wheat. Botanical Magazine, Tokyo 89, 219234.CrossRefGoogle Scholar
Nielsen, G. & Frydenberg, O. (1971). Chromosome localization of the esterase loci Est-1 and Est-2 in barley by means of trisomics. Hereditas 67, 152154.CrossRefGoogle Scholar
O'Mara, J. G. (1940). Cytogenetic studies on Triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25, 401408.CrossRefGoogle Scholar
Riley, R. & Chapman, V. (1958). The production and phenotypes of wheat—rye chromosome addition lines. Heredity 12, 301315.CrossRefGoogle Scholar
Riley, R. & Kimber, G. (1966). The transfer of alien genetic variation to wheat. Annual Report of Plant Breeding Institute, Cambridge. 1964–1965, pp. 636.Google Scholar
Sears, E. R. (1972). Chromosome engineering in wheat. Stadler Genetics Symposium 4, 2338.Google Scholar
Sears, E. R. (1975). The wheats and their relatives. In Handbook of Genetics, vol.II (ed. King, R. C.), pp. 5991. Plenum Press.Google Scholar
Shepherd, K. W. (1973). Homoeology of wheat and alien chromosomes controlling endosperm protein phenotypes. Proceedings of the Fourth International Wheat Genetics Symposium pp. 745760.Google Scholar
Tang, K. W. & Hart, G. E. (1975). Use of isozymes as chromosome markers in wheat-rye addition lines and in triticale. Genetical Research 26, 187201.CrossRefGoogle Scholar
Upadhya, M. D. (1968). Peroxidase isoenzyme associated with an Aegilops umbellulata chromosome segment transferred to Chinese Spring (Triticum aestivum). Experientia 24, 613614.CrossRefGoogle ScholarPubMed
Wolf, G. & Rimpau, J. (1977). Evidence for cytoplasmic control of gene expression in higher plants. Nature 265, 470472.CrossRefGoogle Scholar
Yang, S. Y. (1971). Appendix: Studies in Genetics. University of Texas Publications. 6(7103), 8590.Google Scholar