Published online by Cambridge University Press: 02 October 2006
Unbiased or upper limit estimates of the rate (U) of genomic mutations to mildly deleterious alleles are crucial in genetic and conservation studies and in human health care. However, only a few estimates of the lower bounds of U are available. We present a fairly robust estimation that yields an upper limit of U and a nearly unbiased estimate of the per generation fitness decline due to new deleterious mutations. We applied the approach to three species of the freshwater microcrustacean Daphnia and revealed that the upper limit of U for egg survivorship is 0·73 (SD=0·30) in 14 D. pulicaria populations. For the first four clutches, per generation decline in fecundity due to deleterious mutations ranged from 2·2% to 7·8% in 20 D. pulex populations and from 1·1% to 5·1% in 8 D. obtusa populations. These results indicate the mutation pressure is high in natural Daphnia populations. The approach investigated here provides a potential way to quickly and conveniently characterize U and per generation effects of deleterious genomic mutations on fitness or its important components such as fecundity.