Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T07:46:29.195Z Has data issue: false hasContentIssue false

Two-dimensional Gel Analysis of Proteins from Mouse Fetuses with Trisomy 19 after DEAE-Sepharose Chromatography

Published online by Cambridge University Press:  14 April 2009

Gerd H. Reichert
Affiliation:
Institut für Humangenetik, Universität des Saarlandes, D-6650 Homburg-3, German Federal Republic
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Isoelectrofocusing two-dimensional polyacrylamide gel electrophoresis (IEF-2D-PAGE) offers the opportunity to detect typical alterations in the protein pattern of trisomic mouse foetuses at a given time of development. The fractionation of the cell lysate by differential centrifugation into various subcellular components (nuclei, membranes, polyribosomes, cytoplasmic proteins) and fractionation of the proteins through DEAE-Sepharose chromatography allows detection of protein differences.

It is possible to detect eight differences in the protein patterns between trisomy 19 (Ts 19) mouse foetuses and euploid mouse fetuses at day 15. Five of these differences are quantitative in nature, three are qualitative. One of these proteins is synthesized in Ts 19 foetuses at a higher level than in euploid mouse fetuses (primary gene dosage effect). The other seven proteins are reduced or not present in trisomic foetuses (consequences of primary gene dosage effects).

The molecular mass of the individual proteins ranges from 13 to 41 kDa.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

Duncan, R. & McConkey, E. H. (1982). How many proteins are there in a typical mammalian cell? Clinical Chemistry 28, 4, 749755.CrossRefGoogle Scholar
Fundele, R., Bücher, T., Gropp, A. & Winking, H. (1981). Enzyme patterns in trisomy 19 of the mouse. Developmental Genetics 2, 291303.CrossRefGoogle Scholar
Gropp, A., Tettenborn, U. & Lehmann, E. (1969). Chromosomenuntersuchungen bei der Tabakmaus (M. poschiavinus) und bei Tabakmaus-Hybriden. Experientia 25, 8, 875876.CrossRefGoogle Scholar
Gropp, A., Giers, D. & Kolbus, U. (1974). Trisomy in fetal backcross progeny of male and female metacentric heterozygotes of the mouse. I. Cytogenetics and Cell Genetics 13, 511535.CrossRefGoogle ScholarPubMed
Gropp, A., Kolbus, U. & Giers, D. (1975). Systematic approach to the study of trisomy in the mouse. II. Cytogenetics and Cell Genetics 14, 4262.CrossRefGoogle Scholar
Gropp, A., Putz, B. & Zimmermann, U. (1976). Autosomal monosomy and trisomy causing developmental failure. Current Topics in Pathology 62, 177192.CrossRefGoogle ScholarPubMed
Gropp, A. (1982). Value of an animal model for trisomy. Virchows Archiv A 395, 117131.CrossRefGoogle ScholarPubMed
Hösli, P. & Vogt, E. (1979). High alkaline phosphatase activity in isoproterenol stimulated fibroblast cultures from patients with numerically unbalanced chromosomal aberrations. Clinical Genetics 15, 487494.CrossRefGoogle ScholarPubMed
Klose, J., Zeindl, E. & Sperling, K. (1982). Analysis of protein pattern in two-dimensional gels of cultured human cell with trisomy 21. Clinical Chemistry 28, 4, 987992.CrossRefGoogle ScholarPubMed
Klose, J. & Putz, B. (1983). Analysis of two-dimensional protein patterns from mouse embryos with different trisomies. Proceedings of the National Academy of Sciences USA 80, 37533757.CrossRefGoogle ScholarPubMed
Krone, W., Wolf, U., Goedde, H. W. & Baitsch, H. (1964). Enhancement of erythrocyte-galactokinase activity in Langdon–Down trisomy. Lancet ii, 590.CrossRefGoogle Scholar
Lubitz, W., Reichert, A. & Birkmayer, G. (1980). Membrane alterations in human glioblastoma. Acta Neuropathologica 50, 211216.CrossRefGoogle ScholarPubMed
McDaniel, R. G. & Ramage, R. T. (1970). Genetics of a primary trisomic series in barley: identification by protein electrophoresis. Canadian Journal of Genetics and Cytology 12, 490495.CrossRefGoogle Scholar
O'Farrel, P. H. (1975). High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250, 40074021.CrossRefGoogle Scholar
Patterson, D., Jones, C., Scoggin, C., Miller, Y. E. & Graw, S. (1982). Somatic cell genetic approaches to Down's syndrome. Annals of the New York Academy of Sciences 396, 6981.CrossRefGoogle ScholarPubMed
Reichert, G. H. (1985). Autosomale Trisomien bei Maus und Mensch; Untersuchung der Proteinmuster durch IEF-2D-PAGE. Dissertation, Stuttgart, 111 pp.Google Scholar
Reichert, G. H. & Issinger, O. G. (1985). Comparative studies of the cytoplasmic protein from experimentally induced trisomic mice (Ts19) and disomic controls from the same litter. Genetical Research, Cambridge 45, 215.Google Scholar
Scoggin, C. H. & Patterson, D. (1982). Down's syndrome as a model disease. Archives of Internal Medicine 142, 462464.CrossRefGoogle ScholarPubMed
Scoggin, C. H., Paul, S., Miller, Y. E. & Patterson, D. (1983). Two-dimensional electrophoresis of peptides from human-CHO cell hybrids containing human chromosome 21. Somatic Cell Genetics 9, 687697.CrossRefGoogle ScholarPubMed
Suh, H. W., Goforth, D. R., Cunningham, B. A. & Liang, G. H. (1977). Biochemical characterization of six trisomics of grain sorghum, Sorghum bicolor (L.) Moench. Biochemical Genetics 15, 611620.CrossRefGoogle ScholarPubMed
Unteregger, G., Zang, K. D. & Issinger, O. G. (1983). Two-dimensional polyacrylamide gel electrophoresis of nuclear proteins in human meningiomas. Electrophoresis 4, 303311.CrossRefGoogle Scholar
Van Keuren, M. L., Goldman, D. & Merril, C. R. (1982). Protein variations associated with Down's syndrome, chromosome 21 and Alzheimer's disease. Annals of the New York Academy of Sciences 396, 5567.CrossRefGoogle ScholarPubMed
Weil, J. & Epstein, C. J. (1979). The effect of trisomy 21 on the patterns of polypeptide synthesis in human fibroblasts. American Journal of Human Genetics 31, 478488.Google ScholarPubMed
Wijnen, L. M. M., Van Heuvel, M., Pearson, P. L. & Khan, P. M. (1978). Assignment of gene for glutathione peroxidase (GPX1) to human chromosome 3. Cytogenetics and Cell Genetics 22, 232235.CrossRefGoogle ScholarPubMed