Article contents
Two new X-autosome Robertsonian translocations in the mouse: I. Meiotic chromosome segregation in male hemizygotes and female heterozygotes
Published online by Cambridge University Press: 14 April 2009
Summary
Two new X-autosome Robertsonian (Rb) translocations, Rb(X.9)6H and Rb(X.12)7H, were found during the course of breeding the Rb(X.2)2Ad rearrangement at Harwell. The influence of these new Rbs on meiotic chromosome segregation was investigated in hemizygous males and heterozygous females and compared to that of Rb(X. 2)2Ad. Screening of metaphase II spermatocytes gave incidences of sex chromosome aneuploidy of 9·2% in Rb(X. 2)6H/Y and 9·6% in Rb(X.9)2Ad/Y males; no metaphase II cells were present in the testes of the Rb(X. 12)7H/Y males examined and no males with this karyotype have so far proved fertile. In breeding tests, 5% of the progeny of Rb(X.2)2Ad/Y males were sex chromosome aneuploids compared to 10% of the Rb(X. 9)6H/Y offspring. The difference was not significant, however. Cytogenetic analyses of metaphase II stage oocytes showed elevated rates of hyperhaploidy (n + l) in Rb heterozygous females over chromosomally normal mice: 4·2% for Rb(X.2)2Ad/+; 2·1% for Rb(X.9)6H/+; 2·2% for Rb(X.12)7H/+ and 1·1% for normal females. There was, however, no statistically significant difference in the rates of hyperhaploidy between the three different Rb types, nor overall between Rb/ + and normal females. Karyotypic analyses of liveborn offspring of Rb heterozygous females revealed low incidences of X0 animals but no other type of sex chromosome aneuploidy. Intercrosses of heterozygous females and hemizygous males yielded 5·5% aneuploidy for Rb(X.2)2Ad and 5·4% for Rb(X.9)6H. In heterozygous females, there was evidence from the metaphase II and breeding test data for all three rearrangements, of preferential segregation of the Rb metacentric to the polar body resulting in a deficiency of cells and progeny carrying a translocation chromosome.
- Type
- Research Article
- Information
- Copyright
- Copyright © Cambridge University Press 1991
References
- 14
- Cited by