Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T07:04:48.730Z Has data issue: false hasContentIssue false

Transmissible plasmid coding for the degradation of benzoate and m-toluate in Pseudomonas arvilla mt-2

Published online by Cambridge University Press:  14 April 2009

C. L. Wong
Affiliation:
School of Biological Technology, University of New South WalesP.O. Box 1, Kensington, New South Wales, 2033, Australia
N. W. Dunn
Affiliation:
School of Biological Technology, University of New South WalesP.O. Box 1, Kensington, New South Wales, 2033, Australia
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Pseudomonas arvilla mt-2 (ATCC 23073) has been shown to harbour a transmissible plasmid which codes for the degradation of benzoate and m-toluate. Plasmid-borne genetic information codes for the conversion of these compounds to catechol then the assimilation of catechol via the meta cleavage pathway.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1974

References

REFERENCES

Chakrabarty, A. M. (1972). Genetic basis of the biodegradation of salicylate in Psendomonas. Journal of Bacteriology 112, 815823.CrossRefGoogle Scholar
Dagley, S., Chapman, P. J., Gibson, D. T. & Wood, J. M. (1964). Degradation of the benzene nucleus by bacteria. Nature, London 202, 775778.CrossRefGoogle ScholarPubMed
Dunn, N. W. & Gunsalus, I. C. (1973). Transmissible plasmid coding early enzymes of naphthalene oxidation in Pseudomonas putida. Journal of Bacteriology 114, 974979.CrossRefGoogle ScholarPubMed
Evans, W. C. (1963). The microbiological degradation of aromatic compounds. Journal of General Microbiology 32, 177184.CrossRefGoogle ScholarPubMed
Feist, C. F. & Hegeman, G. D. (1969). Phenol and benzoate metabolism by Pseudomonas putida: regulation of tangential pathways. Journal of Bacteriology 100, 869877.CrossRefGoogle ScholarPubMed
Gunsalus, I. C., Gunsalus, C. F., Chakrabarty, A. M., Sixes, S. & Crawford, I. P. (1968). Fine structure mapping of the tryptophan genes of Pseudomonas putida. Genetics 60, 419435.CrossRefGoogle ScholarPubMed
Murray, K., Duggleby, C. J., Sala-Trepat, J. M. & Williams, P. A. (1972). The metabolism of benzoate and methylbenzoates via the meta-cleavage pathway by Pseudomonas arvilla mt-2. European Journal of Biochemistry 28, 301310.CrossRefGoogle Scholar
Nakazawa, T. & Yokoto, T. (1973). Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: Demonstration of two benzoate pathways. Journal of Bacteriology 115, 262267.CrossRefGoogle ScholarPubMed
Ornston, L. N. & Stanier, R. Y. (1964). Mechanism of β-ketoadipate formation by bacteria. Nature, London 204, 12791283.CrossRefGoogle ScholarPubMed
Rheinwald, J. G., Chakrabarty, A. M. & Gunsalus, I. C. (1973). A transmissible plasmid controlling camphor degradation in Pseudomonas putida. Proceedings of the National Academy of Sciences, U.S.A 70, 885889.CrossRefGoogle ScholarPubMed
Stanier, R. Y., Palleroni, N. J. & Doudoroff, M. (1966). The aerobic pseudomonads: A taxonomic study. Journal of General Microbiology 43, 159273.CrossRefGoogle ScholarPubMed