Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T16:31:03.827Z Has data issue: false hasContentIssue false

Transduction mechanisms of bacteriophage ε15 I. General properties of the system

Published online by Cambridge University Press:  14 April 2009

R. W. Hedges
Affiliation:
Bacteriology Department, Royal Postgraduate Medical School, Du Cane Road, London, W. 12
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bacteriophage εγ is capable of transduction both by replacement of a genetic segment of the recipient by the homologous genetic material from the donor strain and by the formation of defective transducing particles capable of lysogenizing the recipient strain of S. anatum.

The isolation of strains carrying such prophages, which have incorporated the lactose or arabinose operons, is reported. Lysogenic strains, carrying both normal and defective transducing prophage, form high-frequency transducing lysates. Other strains, carrying only defective prophage, show evidence that the association of prophage genes and transduced materials is stable since the loss of one frequently entails loss of the other.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1971

References

REFERENCES

Adams, J. N. & Luria, S. E. (1958). Transduction by bacteriophage P 1: abnormal phage functions of the transducing particles. Proceedings of the National Academy of Sciences, U.S.A. 44, 590594.Google Scholar
Adams, M. H. (1959). Bacteriophages. New York: Interscience Publishers Inc.Google Scholar
Ames, B. N. & Whitfield, H. J. (1967). Frameshift mutagenesis in Salmonella. Cold Spring Harbor Symposium in Quantitative Biology 31, 221226.Google Scholar
Bertani, G. (1958). Lysogeny. Advances in Virus Research 5, 151193.Google Scholar
Bertani, L. E. (1970). Split operon control of a prophage gene. Proceedings of the National Academy of Sciences, U.S.A. 65, 331336.Google Scholar
Brenner, D. J., Fanning, G. R., Johnson, K. E., Citarella, R. V. & Falkow, S. (1969). Polynucleotide relationships among members of the enterobacteriaceae. Journal of Bacteriology 98, 637650.Google Scholar
Brooks, K. & Clark, A. J. (1967). Behaviour of bacteriophage in a recombination of deficient strain of E. coli. Journal of Virology 1, 283293.Google Scholar
Campbell, A. M. (1969). Episomes. New York and London: Harper and Row.Google Scholar
Chakrabaty, A. M. & Gunsalus, I. C. (1969). Autonomous replication of a defective transducing phage in Pseudomonas putida. Virology 38, 92104.Google Scholar
Clowes, R. C. & Hayes, W. (1958). Experiments in Microbial Genetics. Blackwell Scientific Publications.Google Scholar
Demerec, M. & Ohta, N. (1964). Genetic analyses of Salmonella typhimurium × Escherichia coli hybrids. Proceedings of the National Academy of Sciences, U.S.A. 52, 317323.Google Scholar
Dove, W. F. (1967). Synthesis of the chromosome: the role of the prophage termini. In The Molecular Biology of Viruses (ed. Colter, J. S. and Paranchych, W.), pp 111123. New York: Academic Press.Google Scholar
Dubnau, E. & Stocker, B. A. D. (1964). Genetics of plasmids in Salmonella typhimurium. Nature, London 204, 11121113.Google Scholar
Eisenstark, A. (1965). Transduction of Escherichia coli genetic material by phage P 22 in Salmonella typhimurium × E. coli hybrids. Proceedings of the National Academy of Sciences, U.S.A. 54, 15571560.Google Scholar
Harada, K., Kameda, M., Suzuki, M. & Mitsuhashi, S. (1963). Drug resistance of enteric-bacteria. II. Transduction of transmissible drug resistance factors with phage epsilon. Journal of Bacteriology 86, 13321338.Google Scholar
Hedges, R. W. (1971 a). Transduction mechanisms of bacteriophage ε 15 II. Isolation of a bacteriophage related to ε 15. Genetical Research 18, 2127.Google Scholar
Hedges, R. W. (1971 b). Transduction mechanisms of bacteriophage ε 15 III. A new class of mutations affecting the conversion of Salmonella anatum by bacteriophage ε 15. Genetical Research 17, 2932.CrossRefGoogle Scholar
Hercules, K. D., Knacht, R. & Zubay, G. (1968). Differential bacteriophage DNA replication after induction of a strain of Escherichia coli doubly lysogenio for φ80 and φ80dlac. Virology 34, 337343.Google Scholar
Iino, T. & Lederberg, J. (1964). Genetics of Salmonella. In The World Problem of Salmonellosis, ed. van Oye, E.. The Hague, Holland: Junk. pp. 111142.CrossRefGoogle Scholar
Ikeda, H. & Tomizawa, J. (1965). Transducing fragments in generalized transduction by phage P 1, I. Molecular origin of the fragments. Journal of Molecular Biology 14, 85109.Google Scholar
Iseki, S. & Sakai, T. (1953). Artificial transformation of O antigens in Salmonella E group. II. Antigen transforming factor in bacilli of subgroup E 2. Proceedings of the Japan Academy 29, 127131.Google Scholar
Iseki, S. & Sakai, T. (1954). Transduction of biochemical properties in Salmonella E group. Proceedings of the Japan Academy 30, 143147.Google Scholar
Kameda, M., Harada, K., Suzuki, M. & Mitsuhashi, S. (1965). Drug resistance in enteric bacteria. V. High frequency transduction of R factors with bacteriophage epsilon. Journal of Bacteriology 90, 11741181.Google Scholar
Losick, R. (1969). Isolation of a trypsin sensitive inhibitor of O-antigen synthesis involved in lysogenic conversion by bacteriophage ε 15. Journal of Molecular Biology 42, 237246.Google Scholar
Mahler, I., Gahoon, M. & Marmur, J. (1964). Bacillus subtilis DNA transfer in PBS2 transduction. Journal of Bacteriology 87, 14231428.Google Scholar
Matsushiro, A., Sato, K. & Kida, S. (1964). Characteristics of the transducing elements of bacteriophage φ80. Virology 23, 299306.Google Scholar
Miyake, T. (1962). Exchange of genetic material between Salmonella typhimurium and Escherichia coli K 12. Genetics 47, 10431052.Google Scholar
Morse, M. L., Lederberg, E. M. & Lederberg, J. (1956). Transduction in Escherichia coli K 12. Genetics 41, 142156.Google Scholar
Nomura, M. & Benzer, S. (1961). The nature of the ‘deletion’ mutants in the rII region of phage T 4. Journal of Molecular Biology 3, 684691.Google Scholar
Novick, R. (1967). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. Virology 33, 155166.Google Scholar
Okubo, S., Stodolsky, M., Bott, K. & Strauss, B. (1963). Separation of the transforming and viral DNA of a transducing bacteriophage of Bacillus subtilis. Proceedings of the National Academy of Sciences, U.S.A. 50, 679686.Google Scholar
Pritchard, R. H. (1969). Control of replication of genetic material in bacteria. Bacterial Episomes and Plasmids (ed. Wolstenholme, G. E. W. and O'Connor, M.), pp. 6574. London: J. and A. Churchill.Google Scholar
Robbins, P. W. & Uchida, T. (1965). Chemicals and macromolar structure of O antigens from Salmonella anatum carrying mutants of bacteriophage ε 15. Journal of Biological Chemistry 240, 375383.Google Scholar
Sakai, T. & Iseki, S. (1953). Artificial transformation of O antigens in Salmonella E group. III. Physicochemical properties of an antigen transforming factor in bacilli of subgroup E 2. Cunma Journal of Medical Science 2, 235239.Google Scholar
Sanderson, K. E. (1967). Revised linkage map of Salmonella typhimurium. Bacteriological Reviews 31, 354372.Google Scholar
Sheppard, D. & Englesberg, E. (1967). Positive control in the L arabinose gene-enxyme complex of Escherichia coli B/r as exhibited with stable merodiploids. Cold Spring Harbor Symposium on Quantitative Biology 31, 345347.Google Scholar
Thomas, C. A. (1967). The rule of the ring. Journal of Cell Physiology (Suppl.) 70, 1334.Google Scholar
Thomas, C. A., Kelly, J. J. & Rhodes, M. (1969). The intracellular forms of T 7 and P 22 DNA molecules. Cold Spring Harbor Symposium on Quantitative Biology 33, 417424.Google Scholar
Uetake, H., Toyama, S. & Hagiwara, S. (1964). On the mechanism of host induced modification. Virology 22, 202213.Google Scholar
Uetake, H. & Uchida, T. (1959). Mutants of Salmonella phage ε 15 with abnormal conversion properties. Virology 7, 495505.Google Scholar
Zamenhof, S. (1961). Gene unstabilization induced by heat and nitrous acid. Journal of Bacteriology 81, 111117.Google Scholar