Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T04:38:47.689Z Has data issue: false hasContentIssue false

Transcription in X-chromosomal segmental aneuploids of Drosophila melanogaster and regulation of dosage compensation

Published online by Cambridge University Press:  14 April 2009

Jayashree Prasad
Affiliation:
Genetics Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
Ashish K. Duttagupta
Affiliation:
Genetics Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
A. S. Mukherjee
Affiliation:
Genetics Research Unit, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Calcutta 700 019, India
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Transcription of X chromosomal DNA has been examined autoradio-graphically in various 1X2A and 2X2A normal larvae and 1X2A (+ X fr) and 2X2A (+ X fr) segmental aneuploid larvae of species Drosophila melanogaster. The segmental aneuploids contained duplications for the segment 9A–11A and 15D–ISA of the X chromosome. Results show that in the aneuploid male containing 9A–11A duplicaton both the homologous segments involved in the aneuploidy are autonomously hyperactive; their combined activity, measured by X/A grain ratio, is found to be nearly 70% more than the activity in normal male and about 100% more than that in diplo-X female. In the aneuploid female, containing the aneuploid segment 15D–18A and having three doses of the segment of the X chromosome, the activity was over 100% more than the diplo-X activity. The per gene dose activity for the two segments in the aneuploid male and female, respectively, is also significantly higher than their male and female counterparts. The possible role of lack of contiguity of the genetic segments and an intra-nuclear variation has been ruled out by appropriate analysis. We, therefore, interpret these findings to be due to an autonomous expression of the X linked compensatory genes, resulting from a primary modulation in the organization of the entire X chromosome. The autosomal signal then renders the individual genetic locus hyperactive.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1981

References

REFERENCES

Brown, S. W. & Sharat Chandra, H. (1973). Inactivation system of the mammalian X chromosome. Proceedings of National Academy of Science, U.S.A. 70, 195199.CrossRefGoogle ScholarPubMed
Chatterjee, R. N. & Mukherjee, A. S. (1980). Chromosomal basis of dosage compensation in Drosophila. X. Assessment of hyperactivity of the male X in situ. Journal of Cell Science. (In the press.)Google Scholar
Chatterjee, R. N., Mukherjee, A. S., Derksen, J. & Van Der Ploeg, M. (1980). Role of Non-histone chromosomal protein in the attainment of hyperactivity of the X-chromosorne of male Drosophila: A Quantitative Cytochemical Study. Indian Journal of experimental Biology 18, 574575.Google ScholarPubMed
Chatterjee, S. N. & Mukherjee, A. S. (1971). Chromosomal basis of dosage compensation in Drosophila. V. Puffwise analysis of gene activity in the X chromosome of male and female of D. hydei. Chromosoma (Berl.) 36, 4659.CrossRefGoogle Scholar
Chatterjee, S. N., Chatterjee, C. & Mukherjee, A. S. (1978). Effect of puromycin on DNA synthesis in Drosophila polytene chromosmes: A probe into the control of replication. Indian Journal of Experimental Biology 16, 10271031.Google Scholar
Kazazian, H. H., Young, W. J. & Childs, B. (1965). X-linked 6-phospho-gluconate dehydro genase in Drosophila: subunit association. Science 150, 16011602.CrossRefGoogle Scholar
Khesin, R. B. & Leibovitch, B. A. (1974). Synthesis of RNA by E. coli RNA polymerase on the chromosomes of Drosophila melanogaster. Chromosoma (Berl.) 46, 161172.CrossRefGoogle Scholar
Korge, G. (1970 a). Dosage compensation and effect for RNA synthesis in chromosome puffs of Drosophila melanogaster. Nature 225, 386388.CrossRefGoogle ScholarPubMed
Korge, G. (1970 b). Dosis-Kompensation und Dosiseffekt für RNA Synthese in Chromosomen – Puffs von Drosophila melanogaster. Chromosoma (Berl) 30, 430464.CrossRefGoogle Scholar
Lakhotia, S. C. & Mukherjee, A. S. (1969). Chromosomal basis of dosage compensation in Drosophila. I. Cellular autonomy of hyperactivity of male X chromosome in salivary glands and sex differentiation. Genetical Research 14, 137150.CrossRefGoogle ScholarPubMed
Lindsley, D. L. & Grell, E. H. (1968). Genetic variations of Drosophila melanogaster. Carnegie Institute Washington Publication, no. 627.Google Scholar
Lindsley, D. L., Sandler, L., Baker, B. S., Carpenter, A. T. C., Denell, R. E., Hall, J. C., Jacobs, P. A., Gabor Mirlos, G. L., Davis, B. K., Gethmann, R. C., Hardy, R. W., Hessler, A., Miller, S. M., Nozawam, H., Parry, D. M: & Gould-Somero, M. (1972). Segmental aneuploidy and the genetic gross structure of the Drosophila genome. Genetics 71, 157184.CrossRefGoogle ScholarPubMed
Lucchesi, J. C. (1973). Dosage compensation in Drosophila. Annual Review of Genetics 7, 225237.CrossRefGoogle ScholarPubMed
Lucchesi, J. C. (1977). Dosage compensation: Transcription level regulation of X-linked genes in Drosophila. American Zoologist 17, 685693.CrossRefGoogle Scholar
Lucchesi, J. C., Belote, J. M. & Maroni, G. (1977). X-linked gene activity in metamales (X Y;3A) of Drosophila. Chromosoma (Berl.) 65, 17.CrossRefGoogle Scholar
Lucchesi, J. C., Rawls, J. M. Jr. & Maroni, G. (1974). Gene dosage compensation in metafemales (3X;2A) of Drosophila. Nature 248, 564567.CrossRefGoogle ScholarPubMed
Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse. (Mus musculus L.). Nature 190, 372373.CrossRefGoogle ScholarPubMed
Maroni, G. & Lucchesi, J. C. (1980). X-chromosome Transcription in Drosophila. Chromosoma (Berl.) 77, 253261.CrossRefGoogle ScholarPubMed
Maroni, G. & Plaut, W. (1973). Dosage compensation in Drosophila melanogaster triploids. II. Glucose 6-phosphate dehydrogenase activity. Genetics 74, 331334.CrossRefGoogle ScholarPubMed
Mazumder, D., Chatterjee, R. N. & Mukherjee, A. S. (1975). Effect of α-amanitin and cordycepin on the RNA synthesis in the polytene chromosomes of Drosophila melanogaster. Journal of Cytology and Genetics, Congress Supplement, pp. 128132.Google Scholar
Mukherjee, A. S. (1966). Dosage compensation in Drosophila: an autoradiographic study. The Nucleus 9, 8396.Google Scholar
Mukherjee, A. S. (1974). A modified superoperon model of regulation in eukaryotes and its implications on regulation of dosage compensation. The Nucleus 17, 183199.Google Scholar
Mukherjee, A. S. & Beermann, W. (1965). Synthesis of ribonucleic acid by the X chromosomes of Drosophila melanogaster and the problem of dosage compensation. Nature 207, 785786.CrossRefGoogle ScholarPubMed
Muller, H. J. (1950). Evidence of the precision of genetic adaptation. Harvey Lecture Series 43, 165229.Google Scholar
Seecof, R. L., Kaplan, W. D. & Futch, D. G. (1969). Dosage compensation for enzyme activities in Drosophila melanogaster. Proceedings of National Academy of Science, U.S.A. 62, 528535.CrossRefGoogle ScholarPubMed
Stewart, B. R. & Merriam, J. R. (1975). Regulation of gene activity by dosage compensation at the chromosomal level in Drosophila. Genetics 79, 635647.CrossRefGoogle ScholarPubMed
Stewart, B. R. & Merriam, J. R. (1980). Dosage Compensation. In The genetics and biology of Drosophila vol. 2d (ed. Ashburner, M. and Wright, T. R. F.), pp. 107140. Academic Press.Google Scholar